
Programming Interface (SDK)
of TS-HRW Series (13.56 MHz)

Version 2.14

GiS
Gesellschaft für Informatik

und Steuerungstechnik mbH

Höllochstrasse 1
D-73252 Lenningen

Tel. +49 (0)7026 606 0
Fax +49 (0)7026 606 66

Email rfid@gis-net.de
Homepage http://www.gis-net.de/rfid

mailto:rfid@gis-net.de
http://www.gis-net.de/rfid

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 2 of 90
Version 2.14 June 2020

Modification state:

Docu SDK
Version

Date Chapter Name Info

2.02 2.02 03.12.2014 2.1 Blank Setup of Gateway address
2.03 2.03 12.10.2015 5.5 Blank ISO14443B commands added
2.03 2.03 12.10.2015 2.3 Blank Extended error message reporting
2.03 2.03 12.10.2015 5.6 Blank Mifare DESFire commands added
2.03 2.03 12.10.2015 6 Blank Error messages completed
2.03 2.03 25.02.2016 Blank Device types renewed
2.05 2.05 22.07.2016 5.6 Scherzinger Mifare DESFire additional explanations
2.06 2.06 04.01.2017 6 Scherzinger NFC commands added
2.06 2.06 05.01.2017 1.1, 3.8 Blank Extensions for simplified usage in Reader

mode
2.07 2.07 02.05.2017 6 Blank NFC command for Text added
2.08 2.08 19.06.2017 3.8 Blank Amendment at errors in Reader mode
2.09 2.09 27.07.2017 6.4 Scherzinger NFC commands extended or renamed
2.10 2.11 04.12.2018 3.2 Blank Reader mode parameters extended
2.12 2.12 08.07.2019 2. Blank additional functions added
2.13 2.13 06.12.2019 Blank Use of several devices now different handles
2.13 2.14 08.01.2020 Blank the commands TSHRW_Beep,

TSHRW_SetLED, TSHRW_RawWrite are
now executed correctly

2.14 2.14 08.06.2020 2.3 Blank Command TSHRW_KeepAppActive added
to documentation

Ownership conditions:
This document and the software (SDK) are in absolute ownership of GiS, Gesellschaft
für Informatik und Steuerungstechnik mbH and all items are to be used confidentially. It
is only allowed to use this information and also the SDK together with RFID-Systems of
GiS. Without allowance of GiS it is strictly prohibited to make any copies or to give it to
third parties neither complete nor in parts.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 3 of 90
Version 2.14 June 2020

Table of contents
1. Introduction ... 5

1.1. Operation modes ... 6
1.1.1. Reader mode ... 6
1.1.3. Programmer mode ... 6

1.2. Error treatment ... 7
1.3. Definitions .. 7

2. General commands... 8
2.1. Functions for Ethernet Devices .. 10
2.2. Functions for devices with Bluetooth Interface ... 13
2.3. Common functions for device access .. 15

3. Parameter setup for Reader Mode ... 21
3.1. Write Key value .. 21
3.2. Parameter read and write .. 21

3.2.1. Parameter structure ... 22
3.3. Prefix .. 23
3.4. Suffix .. 23
3.5. Termix .. 24
3.6. Postcode .. 24
3.7. Reader Mode Parameter (not for devices with PS2 Interface) 25

3.7.1. Reader mode parameter structure ... 25
3.8. Data reception in Reader mode ... 26

3.8.1. Cyclic query ... 26
3.8.2. Set up callback function ... 26
3.8.3. Set LED and buzzer .. 27

4. Commands for Transponder Type ISO 15693 28
4.1. Get Inventory of tags in antenna field .. 29
4.2. Select transponder ... 30
4.3. Get Transponder info ... 31
4.4. Stay Quiet .. 32
4.5. Reset to ready state ... 32
4.6. Read single block... 33
4.7. Read multiple blocks .. 33
4.8. Read security state .. 34
4.9. Write single block ... 34
4.10. Lock block .. 35
4.11. Write AFI .. 35
4.12. Lock AFI ... 35
4.13. Write DSFID ... 36
4.14. Lock DSFID ... 36
4.15. Raw request ... 37

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 4 of 90
Version 2.14 June 2020

5. Commands for Transponder Type MIFARE®
(ISO14443A) .. 38

5.1. Application hints ... 38
5.1.1. MIFARE® Ultralight (NFC Type 2) ... 38
5.1.2. MIFARE® Classic .. 39
5.1.3. MIFARE® DESFire .. 39

5.2. Function calls MIFARE® common ... 40
5.3. Function calls MIFARE® Classic and Ultralight ... 42
5.4. Function calls ISO14443A-4 .. 45

5.4.1. ISO14443-4 activation ... 45
5.5. Function calls ISO14443B ... 47
5.6. Function calls Mifare DESFire.. 49

5.6.1. Security commands ... 50
5.6.2. Card level commands .. 54
5.6.3. Card Level Commands for Application management 57
5.6.4. File level commands .. 60
5.6.5. Commands according to ISO 7816-4 .. 75

6. Commands for NFC (Near Field Communication) 77
6.1. General remarks .. 77
6.2. Supported transponder types ... 78

6.2.1. NFC Type 2 ... 78
6.2.2. NFC Type 4 ... 78
6.2.3. NFC Type 6 ... 78
6.2.4. NFC Type 7 ... 78

6.3. Supported types of user data ... 79
6.3.1. Text ... 79
6.3.2. WWW Address .. 79
6.3.3. Telephone.. 80
6.3.4. SMS ... 80
6.3.5. Email ... 81
6.3.6. Contact .. 82

6.4. Function calls NFC... 83

7. Error list .. 87
7.1. Common errors .. 87
7.2. Error accessing ISO15693 Transponder .. 88
7.3. Error accessing MIFARE® transponder ... 88
7.4. SDK specific DESFire error codes ... 88
7.5. By DESFire card created native errors .. 89
7.6. DESFire error codes according to ISO7816-4, generated by card 89
7.7. Error codes NFC commands ... 90

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 5 of 90
Version 2.14 June 2020

1. Introduction

The programming interface is built for simple integration of TS-HRWxx devices in arbitrary
applications.

The interface to the devices is in GiS Standard Protocol G200 or S002.
The recognition of the device protocol is done automatically when the connection is established.
This is done by making the version query with the different protocol types.

The dynamic link library (DLL) provides all commands and maps the entire functionality of the
module. You can use the DLL in several program languages.
Two variants of the DLL are given for 32 Bit or 64 Bit applications.

Filename Import library Type Import for C /
C++

Import for C#

TS_HRW_SDK.dll TS_HRW_SDK.lib 32Bit ts_hrw_import.h ts_hrw_import.cs
TS_HRW_SDK64.dll TS_HRW_SDK64.lib 64 Bit ts_hrw_import.h ts_hrw_import64.cs

Depending on the device, not all commands are supported. So for example the commands for
Mifare® are only supported by TS-HRW38 and TS-HRW32.

In particular, care must be taken that only TS-HW and TS-HRW devices support the programmer
mode, and thus the commands from chapters 4 - 6. TS-HR devices are restricted to use in reader
mode and respond in principle to commands of the programmer mode with the error code 24.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 6 of 90
Version 2.14 June 2020

1.1. Operation modes
Depending on the device, different operation modes are available. It is to be distinguished between
the operation modes "Reader mode" and "Programmer mode".
Devices of "R" series work only in "Reader mode", Devices of "W" series only in "Programmer
mode", while devices of "RW" series support both modes.

1.1.1. Reader mode
Automatic reading is called "reader mode". The reader works autonomous and sends the read
transponder data through its interface as ASCII characters. Which data in which format is to be sent
is adjusted using the "TS-HRW ReaderSetup" application or the functions described in chapter 3.
This mode is also often used, if the device has to be used without usage of the SDK, especially if
used with serial interface in a third party application designed for serial interface connection or as
HID (Human Interface device) in keyboard mode.
To be used with the SDK special access functions are available which do not work with GiS
Standard protocol. (Chapter 3.8.)
Take care using other commands in reader mode, the reader will send data automatically if a tag is
presented to the device, so this may cause collisions at the reply to standard commands.
This was the reason why special direct access commands had been created to access the buzzer and
the LED which do not send any response. (Chapter 3.8.)

1.1.3. Programmer mode
In programmer mode all access to the transponder is done through commands.
The commands from Chapter 4, 5 and 6 as well as the common commands from chapter 2 might be
used.
In this mode it is possible to read and write all the blocks at different transponder types.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 7 of 90
Version 2.14 June 2020

1.2. Error treatment

All function give a return value of -1 if an error occurred. To get the error code, call
TSHRW_GetLastError().
You can also get an error message text using TSHRW_GetLastErrorMessage()

Error list is at the end of the document.

1.3. Definitions

The following data types are used in the function declarations:

int 32 Bit Integer

BYTE 8 Bit unsigned integer

BYTE * pointer to array with 8 Bit unsigned integer values

char * pointer to array with 8 Bit signed integer values,
(ANSI Strings in C definition) mostly 0-terminated

The order of data in the fields is always LSB first.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 8 of 90
Version 2.14 June 2020

2. General commands

int TSHRW_LibVersion()
Return: -1 error, >0 Version number with factor 100. E.g. 100 is 1.00

Provides DLL version.
This function does not need TSHRW_OpenPort.

int TSHRW_IsVirtualComInstalled()
Return: 1 Virtual Com Driver for TS-HRW38 is installed

0 Virtual Com Driver for TS-HRW38 is not installed.

int TSHRW_IsDeviceDriverMissing()
Return: 0: There are no GiS Devices with missing drivers attached

1: driver for attached HRW34 USB device is missing
2: driver for attached HRW38 VCOM device is missing
3: driver for attached HRW34 USB and HRW38 VCOM device is missing

int TSHRW_CountAllDevices()
Return: Number of USB devices

The return value is the number of actually connected USB devices.
Only GiS devices are factored in. A maximum number of 1000 devices will be listed.

int TSHRW_ListAllDeviceNames(char* NamenListe, int BufferSize)
NamenListe Name list is a number of null terminated strings.

End of the list is an empty string.
BufferSize Size of the buffer the user allocates.
Return: <0 error, otherwise the value is the size of actually used buffer

The function ListAllDeviceNames provides the USB names (serial numbers) of the USB devices.
Only GiS TS-HR3x and TS-HW3x devices are factored in. Each name consist of a NULL
terminated string with at least 8 and am maximum of 15 ASCII characters.
Example: „11360001“ or "1460-0001 HID".
Because of the addition "HID" you can distinguish between normal and HID devices which support
the USB-HID device interface.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 9 of 90
Version 2.14 June 2020

int TSHRW_GetAvailablePorts(char* NamenListe, int BufferSize)
Name list Name list is a number of null terminated strings.

End of the list is an empty string.
Buffer size Size of the buffer the user allocates.
Return: <0 error, or the value is the size of actually used buffer

The function GetAvailablePorts provides the names of all available COM-interfaces.
Each name consists of a NULL terminated string. Example: “COM1”.
The maximum number of serial interfaces is 255.
The COM Interfaces can exist as real or virtual (through USB realized) Interfaces.
At virtual ports the Name of the virtual port is also given.

Examples:
"\\.\COM1" Real COM Port 1
"\\.\COM4 [GiS Virtual COM]" Virtual COM Port 4 created by the "GiS Virtual COM"

driver.
"\\.\COM14 [GiS/FTDI Virtual COM]" Virtual COM Port 14 created by the

"GiS/FTDI Virtual COM" driver.

The returned Interface names can be transferred to TSHRW_OpenPort directly.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 10 of 90
Version 2.14 June 2020

2.1. Functions for Ethernet Devices

int TSHRW_LanListAllDeviceNames(char* NamenListe, int nBufferSize)
NameList Name list is a number of null terminated strings.

End of the list is an empty string.
BufferSize Size of the buffer the user allocates.
Return: <0 error, or the value is the size of actually used buffer

The function LanListAllDeviceNames provides the LAN names of the LAN devices.
Only GiS TS-HR3x and TS-HW3x devices are factored in. Each name consists of a NULL
terminated string. The buffer space must be big enough to fit for all devices in the network.
Examples:

192.168.0.100-10001
[TS-LAN01]

The device name can be the IP-Address of the device followed by the port number or at DHCP
devices, the DHCP name. The DHCP Name is written in []. With this function only devices are
found, which are reachable with the actual network settings.

int TSHRW_LanConfigListDevices(char* NamenListe, int nBufferSize)
NameList Name list is a number of null terminated strings.

End of the list is an empty string.
BufferSize Size of the buffer the user allocates.
Return: <0 error, or the value is the size of actually used buffer

The function LanConfigListDevices provides the LAN names of all the LAN devices.
Each name consists of a NULL terminated string. The buffer space must be big enough to fit for all
devices in the network.
Examples:

192.168.0.100-10001
[TS-LAN01]169.194.245.01-10001

The device name can be the IP-Address of the device followed by the port number or at DHCP
devices, the DHCP name followed by IP-Address and Port number. The DHCP Name is written
in []. With this function all devices are found, also if they are not reachable with the actual network
settings.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 11 of 90
Version 2.14 June 2020

int TSHRW_LanChangeIPAddress(LPCTSTR OldAddress,
LPCTSTR NewAddress,
LPCTSTR IPMask)

OldAddress Old IP-Address
NewAddress New IP-Address
IPMask New IP-Mask

int TSHRW_LanChangeIPAddressEx(LPCSTR OldAddress,
LPCSTR NewAddress,
LPCSTR IPMask
LPCSTR Gateway)

OldAddress Old IP-Address
NewAddress New IP-Address
IPMask New IP-Mask
Gateway New gateway address

With this function the IP-Address and port number of a device can be changed.
To do this, the device must be reachable with the actual Network settings.
The parameters are all 0 terminated ASCII Strings.
The IP-Addresses are either the IP-Address followed by the port number or the DHCP Name
embedded in [].
Example:

192.168.0.100-10001
[TS-LAN01]

In the IP Mask the significant bits are set as bit mask.
Example:

255.255.255.0

At Gateway address the IP Address of the gateway is given. If no gateway shall be set, please use
0.0.0.0 . At gateway no DHCP Name can be used.

With changing the IP-Address the device is restarted. It can last up to 25 Seconds until the device is
available in the network.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 12 of 90
Version 2.14 June 2020

int TSHRW_LanGetIPAddressEx(LPCSTR Name,
LPSTR Address,
LPSTR IPMask
LPSTR Gateway)

Name Name of device
Address IP-Address
IPMask IP-Mask
Gateway Gateway address

With this function the IP-Address and the port number of a device is read.
To do this, the device has to be reachable with the actual Network settings.
The parameters are all 0 terminated ASCII Strings.
In Address either the DHCP Name or the IP Address is delivered.
In each passed string enough space to store the address has to be available (at least 30 Byte)

int TSHRW_LanIsDeviceAvailable(LPCTSTR Address)
Address IP-Address

Return value: < 0 Error,
0 Device not available
> 0 Device available

The IP-Address is either the IP-Address followed by the port number or the DHCP Name
embedded in [].
Example:

192.168.0.100-10001
[TS-LAN01]

With this function can be tested if the device is available in the network.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 13 of 90
Version 2.14 June 2020

2.2. Functions for devices with Bluetooth Interface

At devices with Bluetooth interface a two steps connection establishment is needed.
First of all the local Bluetooth device has to be found (GIS Bluetooth USB Adapter)
The connection to this device is made through TSHRW_OpenPort(…).
After this the external Bluetooth devices can be searched and connected by using the opened port.

int TSHRW_BT_ListAllDeviceNames(char* Buffer, int BufferSize)
Buffer Name list is a number of null terminated strings.

End of the list is an empty string.
BufferSize Size of the buffer the user allocates.
Return: <0 error, or the value is the size of actually used buffer

The function BT_ListAllDeviceNames is used to get the USB-Names (Serial numbers)
of all existing GIS USB Bluetooth Adapters. Every name consists of a NULL terminated string.

int TSHRW_BT_Search(int PortHandle, BYTE * DeviceList, int BufferSize, int Timeout)
PortHandle Port handle from OpenPort
DeviceList Description of DeviceList follows below.
BufferSize Length of Device list
Timeout Duration for search in milliseconds usually used 120000.
Return: <0 error, or the value is the size of actually used buffer

Only as many devices are listed as space in device list is available. If more devices are found, these
are ignored.

An entry in the device list is as follows:
Start length meaning
0 6 Bluetooth address of the remote device
6 32 Local Name of the remote device

for ex.: "PN1450#0001"
The Name is fills with Null bytes.
The name has up to 31 Bytes, the 32nd Byte is the terminator (Null byte)

The device list is a list of such entries.
The returned length is always multiple of 38.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 14 of 90
Version 2.14 June 2020

int TSHRW_BT_Connect(int PortHandle,BYTE * Device,int Timeout)
PortHandle port handle
Device Bluetooth Address of the remote device
Timeout max. Duration for the connection setup in milliseconds, normally 3000.
Return: < 0 Error,

0 connection established.

Using this function the connection to the remote device is established.
Once the connection is established the normal functions for the communication are used as if the
device would be locally connected.

int TSHRW_BT_CheckConnection(int PortHandle)
PortHandle port handle
Return: < 0 Error,

0 Connection is released
1 Connection exists

Checks the connection state and returns if the connection still exists or if the link is released

int TSHRW_BT_Disconnect(int PortHandle)
PortHandle port handle
Return: < 0 Error,

0 Connection disconnected.

Disconnect the remote device. Because the local Bluetooth stick is already open a connection to
another remote device can be established now also.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 15 of 90
Version 2.14 June 2020

2.3. Common functions for device access

Attention: The function TSHRW_OpenPort() has to be called before using any other
command. The returned handle is necessary for all read and write commands.
If there is an interface open error, the return value is a negative error number.
See error list.

int TSHRW_OpenPort(LPCTSTR strInterfaceName, int Baudrate, int Timeout)
Opens the interface for RS232 and USB devices.
strInterfaceName Name of the interface. e.g. “COM1” or serial number of USB devices.

For USB devices you have to put in the device name.
At USB HID devices you have to put in the device name followed by "HID"
You can get the device name with the function
TSHRW_ListAllDeviceNames.
E.g. “10610011”. or "1317-0001 HID"
At LAN devices you have to give the address of the device.
The available LAN devices can be found with function
TSHRW_LanListAllDeviceNames.

Baudrate Set the baud rate. Valid values are 4800, 9600 und 19200.
Attention: Not all devices support every baud rate.
Please read device specification. for valid baud rates.
Default setting for RS232 readers is 19200.
USB and LAN devices do ignore the baud rate. (internally fixed 19200)

Timeout Time span after which communication shall break off. (in milliseconds)
Return: <0: error, >0: PortHandle

Optionally the device address can be given at the interface name. For example COM1:4 opens at
COM 1 the device with address 4. This is necessary if the device address is not 1, because
TSHRW_OpenPort makes a connection to the device and this is only accepted if the device
answers.
The function automatically recognizes the under laying protocol of the device
(normally GiS LowLevel Protocol G200, at MultiX devices MultiX Modbus Protocol, at S002
devices GiS LowLevel Protocol S002, Medio P200u uses S004 Protocol)
Medio P200u is always using virtual com mode and has to be opened with Baud rate 115200.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 16 of 90
Version 2.14 June 2020

Attention: You generally have to call TSHRW_ClosePort() at the end of the application,
because this function closes the interface and frees all resources.

int TSHRW_ClosePort(int PortHandle)
PortHandle Port handle from OpenPort
Return: -1 error, 0 OK

int TSHRW_KeepAppActive (int PortHandle, int bActive)
PortHandle Access handle
bActive 0: Application is inactive while a SDK function is running

1: Application keeps active while a SDK function is running

This is used to control the behavior of a calling application. It is helpful if functions are called in
very short interval. After TSHRW_OpenPort it is set to bActive = 0. So while a function is called
the application is blocked. After calling KeepAppActive with bActive = 1 the application stays
active also while inside a function call. It is to be ensured by the user that no more functions for this
port handle are called while a function is running.

int TSHRW_IsUSB(int PortHandle)
PortHandle Port handle from OpenPort
Return: -1 error, 0 = NO USB Port, 1 = USB Port

int TSHRW_IsProgrammer(int PortHandle)
PortHandle Port handle from OpenPort
Return: -1 error

0 = Programmer Mode is not supported
1 = Programmer Mode is supported

This function returns if the programmer mode is supported by the device and the corresponding
commands are allowed, not if the programmer mode is activated.

int TSHRW_IsReader(int PortHandle)
PortHandle Port handle from OpenPort
Return: -1 error

0 = Reader Mode is not supported
1 = Reader Mode is supported

This function returns if the reader mode is supported by the device, not if the reader mode is
activated.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 17 of 90
Version 2.14 June 2020

int TSHRW_SetReaderAdresse(int PortHandle, int Address)
PortHandle Port handle from OpenPort
Address Address of module, default value after OpenPort is 1 or the address given at

OpenPort. The address is only used in RS485 connections if more than one
device is attached.

Return: < 0 error, 0 OK

int TSHRW_DeviceVersion(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to version data
BufLen Length of version data (4 Byte)
Return: -1 Error

Device type and Firmware version in ASCII Format.
Byte 1 – 3 device type
Byte 4 Firmware version (0 – 9, A – Z,a – z)

The Dll supports the following device versions:
Device numbers of TS-HR3x and TS-HW3x RFID devices
The device number serves to classify the device type.
121 = (TS-HW34) only programmer
122 = (TS-HR34 PS2) only reader for PS2 Interface (configurable using RS232)
123 = (TS-HRW34 PS2) reader for PS2 Interface and Programmer with RS232 Interface
124 = (TS-HR34) only reader
125 = (TS-HRW34) programmer and reader
135 = (TS-HRW90) programmer and reader with RS485 Interface
141 = (TS-HW36) only programmer with HID or LAN Interface
144 = (TS-HR36) only reader with HID or LAN Interface
145 = (TS-HRW36) programmer and reader with HID or LAN Interface
161 = (TS-HW38) only programmer with HID or LAN Interface
164 = (TS-HR38) only reader with HID or LAN Interface
165 = (TS-HRW38) programmer and reader with HID or LAN Interface
171 = (TS-HW34 S002) programmer with S002 protocol
195 = (TS-HRW32) programmer and reader
117 = (TS Medio P200u) programmer with S004 Protocol
405 = (TS-HRW390) programmer and reader

The devices TS-HW34, HR34 and HRW34 are available in RS232, USB or Bluetooth version.
The devices TS-HW36, HR36 and HRW36 are available in USB-HID or LAN version.
The devices TS-HW38, HR38 and HRW38 are available in RS232, USB-HID, USB-VCOM or LAN version.
The devices TS-HRW32 are available in RS232, USB-HID or USB-VCOM version.

The device series TS-HRW38, TS-HRW32 and TS-HRW390 supports additional to the transponders in ISO15693
Standard also MIFARE® classic, Ultralight® and DESFire®

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 18 of 90
Version 2.14 June 2020

int TSHRW_SetBaudrate(int PortHandle, int Baudrate)
Set baud rate (only for RS232 devices; USB devices provide an error).
PortHandle Port handle from OpenPort
Baudrate 2400, 4800, 9600 und 19200 (Default = 19200).
Return: -1 error, 0 OK

int TSHRW_SetReaderMode(int PortHandle, int mode)
PortHandle Port handle from OpenPort
Mode 1 sets the device to reader mode.

0 sets the device to programmer mode.
Return: -1 error, 0 OK

int TSHRW_SetRF(int PortHandle,int OnOff)
PortHandle Port handle from OpenPort
OnOff 0 = turn antenna field off, 1 = turn antenna field on
Return: -1 error, 0 OK

int TSHRW_GetLastError(int PortHandle)
PortHandle Port handle from OpenPort
Return: See error numbers in appendix

int TSHRW_GetLastErrorMessage (int PortHandle, int Language,
 char* pMessageBuffer, int MessageBufferLen)

PortHandle Device handle
Language 0: English, 1: German, other values: English
pMessageBuffer Pointer to buffer for message
MessageBufferLen Length of buffer for message
Return: -1 error, > 0 Length of message

Provides an error message string after execution of a command.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 19 of 90
Version 2.14 June 2020

int TSHRW_SetIO(int PortHandle,int Maske, int Daten)
PortHandle Port handle from OpenPort
Maske Mask values for outputs to set
Daten Values for outputs

all bits are used, which are set in the mask.
Return: -1 error, 0 OK

With this outputs of the device are set. Depending on the device, different outputs are available.
After power on at the device the LED's are set automatically. After using this command only those
outputs are set automatically which are not included in the mask.

Definition of bits:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
led yellow Led green Led red Buzzer Out 3 Out 2 Out 1 Out 0

If the device is equipped with a relay output, this is connected through Out 0.

Example: Mask: C0H Data: 40H sets the green led and turns the yellow led off, the red led and all
other outputs are kept unattended and are set through the reader regarding to the operation mode.

int TSHRW_ReadIO(int PortHandle)
PortHandle Port handle from OpenPort
Return: -1 error, Value of the inputs read

It depends on the device version which inputs are available.
If the device is equipped with a sensor input, this is available in the lowest bit.

int TSHRW_RawWrite(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to write buffer
BufLen Length of buffer
Return: -1 Error, 0 OK

This function writes arbitrary data to the interface.
No protocol implied.

int TSHRW_RawRead(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to read buffer
BufLen Length of buffer
Return: -1 Error, length of actually read data.

This function reads arbitrary data to the interface.
No protocol implied.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 20 of 90
Version 2.14 June 2020

int TSHRW_SetConfig(int PortHandle, BYTE * pConfig, int ConfigLen)
PortHandle Port handle from OpenPort
pConfig pointer to configuration
ConfigLen Length of buffer
Return: -1 Error, 0 OK

Write the configuration to the device. The configuration is dependent of the device.
This command is not supported at all devices.

int TSHRW_GetConfig(int PortHandle, BYTE * pConfig, int ConfigLen)
PortHandle Port handle from OpenPort
pConfig pointer to read buffer
ConfigLen Length of buffer
Return: -1 Error, length of actually read data.

Read the configuration from the device. The configuration is dependent of the device.
This command is not supported at all devices.

int TSHRW_SetDefault(int PortHandle)
PortHandle Port handle from OpenPort
Return: -1 Error, 0 OK

Activate Factory default settings. This command is not supported at all devices.

int TSHRW_ReadSerialNumber(int PortHandle, BYTE * pSerial, int Buflen)
PortHandle Port handle from OpenPort
pSerial pointer to read buffer
Bufken Length of buffer
Return: -1 Error, length of actually read data.

Read serial number of the device. This command is only supported at new devices.
Serial number is reported as 4 Byte binary Number with LSB first.

int TSHRW_SetCommunicationMode(int PortHandle, int Mode)
PortHandle Port handle from OpenPort
Mode Communication mode

1: USB HID Interface
2: USB Virtual COM Interface

Return: -1 Error, 0 OK

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 21 of 90
Version 2.14 June 2020

3. Parameter setup for Reader Mode
These commands are used to set up the device in reader mode

3.1. Write Key value
This function is only used at MIFARE® transponders and is only supported at readers which support
MIFARE®.

int TSHRW_WriteMifareKey(int PortHandle, int KeyType, BYTE * pKey, int KeyLen)
PortHandle Port handle from OpenPort
KeyType Key type
pKey pointer to key

The key has to have 6 Bytes.
KeyLen length of key (6 Byte)
Return: -1 Error, 0 OK

3.2. Parameter read and write
If multiple parameter data structures are given, the transponder types are polled alternating.
If only one data structure is given, this does not have to be filled completely, if multiple data
structures are given, these have to be set completely with 20 Byte per data structure.
Attention: only device type TS-HR38 and TS-HR32 supports multiple data structures. Al all former
devices only one data structure with maybe less parameters is supported.

int TSHRW_ReadParam(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to read buffer.

See: 3.2.1 Parameter structure.
BufLen Length of read buffer (20 Byte per data structure)
Return: -1 error, length of actually read data

int TSHRW_WriteParam(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to write buffer.

See: 3.2.1 Parameter structure.
BufLen Length of write buffer (20 Byte per data structure)
Return: -1 error, 0 OK

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 22 of 90
Version 2.14 June 2020

3.2.1. Parameter structure
The parameter for reading and writing are passed always in the same order.
Pos. length Name Description
0 1 Wait Wait time between 2 characters: (0 – 127) Only PS/2.

Wait time = N/2 in milliseconds. Default = 10
1 1 TTyp Transponder type:

Bit 0 – 5 0 = UID ISO15693 1 = Register ISO15693
2 = UID Mifare 3 = Register Mifare
4 = UID ICode1 5 = Register ICode1
6 = UID DESFire 7 = File content DESFire

Bit 6: 0 = normal 1 = Bitwise mirrored
Bit 7 0 = LSB first 1 = MSB first (Byte wise turned)

2 5 Register The entry consists always of 4 Register data bytes and the end identification
0xffH (5th Byte). This entry is only valid if a "Register" type is selected in
TTyp (1 or 3). Byte 5 is always the end identification 0xffH. e.g.
0x00,0x01,0x0f,0x05,0xff.
If TTyp 7 File content DESFire is used, the first 3 byte define the Application
ID and the 4th Byte defines the FileID.

7 1 DTyp Data type:
 0 = Hexadecimal, 3 = Decimal without leading zero,
 1 = decimal, 4 = Hexadecimal with lower case letters
 2 = ASCII, 5 = ASCII, 00H will be suppressed,

do not fill with SPACE
8 1 Character Number of characters. (1–32).

Defines how much characters are transferred per block.
9 1 Frequenz Frequency. Only for PS/2. Here we transfer a special interval time span.

You can calculate the corresponding frequency with the formula:

)*][8][64(
1][

Nss
MHzf

mm +
= .

The value 5 is correlating with frequency 10 kHz. (Default)
The value 17 is correlating with frequency 5 kHz.
(Values are rounded).

10 1 Timeout You can calculate the time out with the following formula: (Only for PS/2):
T [ms] = 30[ms] + 30[ms] * Timeout. Default value is 5, which means 180 ms.
After this time is gone, the same transponder can be read again.

11 1 ValidBytes (1-16) Number of bytes used in UID or data blocks. With this, the upper bits of
the UID can be masked out. Default value is 5

12 1 ValidFrom (1-16) Start byte from which the data is transferred. This is only available at
TS-HR38 with Version 1.07 or higher and TS-HR32.

13 1 TypKenn1 Detection characters for the transponder type are transmitted before the data,
1 ASCII character, at 0 nothing is transferred.

14 1 TypKenn2 Detection characters for the transponder type is transmitted according to the
data, 1 ASCII character, at 0 nothing is transferred.

15 1 DesfireMode 0:plain, 1:Authenticated, 2:with MAC, 3:fully encrypted
16 4 - Reserve, default value 0

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 23 of 90
Version 2.14 June 2020

3.3. Prefix

Reading and writing of the Prefix setting
The prefix consists of 31 characters maximum. End marker is 0xFF Hex.

int TSHRW_WritePrefix(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to write buffer.
BufLen Length of write buffer
Return: -1 error, 0 OK

int TSHRW_ReadPrefix(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to read buffer.
BufLen Length of read buffer
Return: -1 error, length of actually read data

3.4. Suffix

Reading and writing of the Suffix setting
The suffix consists of 31 characters maximum. End marker is 0xFF Hex.

int TSHRW_WriteSuffix(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to write buffer.
BufLen Length of write buffer
Return: -1 error, 0 OK

int TSHRW_ReadSuffix(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to read buffer.
BufLen Length of read buffer
Return: -1 error, length of actually read data

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 24 of 90
Version 2.14 June 2020

3.5. Termix

Reading and writing of the Termix setting
The termix consists of 31 characters maximum. End marker is 0xFF Hex.

int TSHRW_WriteTermix(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to write buffer.
BufLen Length of write buffer
Return: -1 error, 0 OK

int TSHRW_ReadTermix(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to read buffer.
BufLen Length of read buffer
Return: -1 error, length of actually read data

3.6. Postcode

Reading and writing of the Postcode setting
The postcode consists of 31 characters maximum. End marker is 0xFF Hex.

int TSHRW_WritePostcode(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to write buffer.
BufLen Length of write buffer
Return: -1 error, 0 OK

int TSHRW_ReadPostcode(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to read buffer.
BufLen Length of read buffer
Return: -1 error, length of actually read data

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 25 of 90
Version 2.14 June 2020

3.7. Reader Mode Parameter (not for devices with PS2 Interface)

Read and write the reader mode parameters.

int TSHRW_WriteReadModeParam(int PortHandle, BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to write buffer.

See: 3.7.1 Read mode parameter structure
BufLen Length of write buffer
Return: -1 error, 0 OK

int TSHRW_ReadReadModeParam(int PortHandle,BYTE * pBuffer, int BufLen)
PortHandle Port handle from OpenPort
pBuffer Pointer to read buffer.

See: 3.7.1 Read mode parameter structure
BufLen Length of read buffer
Return: -1 error, length of actually read data

3.7.1. Reader mode parameter structure

The parameter for reading and writing are passed always in the same order.

Data 1 Data 2 Data 3 Data 4
Mode Cycle time Prompt Timeout

Mode: Operation mode
0: Send data when transponder goes in field and when transponder leaves field.
1: Send data when prompt is sent.
 The prompt is defined in Prompt.
 The device sends data if the prompt is sent to the device.
3: Send data cyclic

Cycle time: The time is given in 1/10 seconds. The default value is 10 which means 1 second.
The cycle time is valid in mode 3 and 5.

Prompt: Character for prompting which is needed only in Mode 1. Default value is '?' (3fH)
Timeout The time is given in 1/10 seconds. The default value is 20 which means 2 seconds.

The Timeout is valid in mode 0 and 5. It defines how long a transponder has to be
out of field to be recognized again as new transponder.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 26 of 90
Version 2.14 June 2020

3.8. Data reception in Reader mode

The data received in reader mode can be accepted in different ways.

3.8.1. Cyclic query
The received items can be loaded using multiple calls of the TSHRW_RawRead command.
Then the data set has to be connected out of all the received parts. The check for end of data has to
be done by the calling instance.

3.8.2. Set up callback function
Using an application specific call back function, the data set can be received and evaluated by the
SDK. The complete data set is given to the callback function as one string of data. It is essentially
needed, that transmission ends with a unique character. Normally CR = 0DH is used for this.

int TSHRW_StartAutoRead(int PortHandle, int TermChar, AutoReadCallback pAutoReadProc)
PortHandle Port handle
TermChar Terminating character for the transmission. This character triggers the call

of the callback function.
pAutoReadProc pointer to callback function
Return value: -1 Error, 0: OK

Definition of callback function:
'C'
typedef int(__stdcall* AutoReadCallback)(char * pData, int Len);

'C#'
delegate int AutoReadCallback([MarshalAsAttribute(UnmanagedType.LPStr)] string pData,

int Len);

'VB'
Delegate Function AutoReadCallback (<MarshalAs(UnmanagedType.LPStr)> Arr As String,

ByVal Len As Integer) As Integer

The usage of the callback function is described in the "Readermodus" sample application.
The callback function is called with an empty string and Len=0, if the used device is no longer
available, for example, if the USB Device is removed during work.

int TSHRW_StopAutoRead(int PortHandle)
PortHandle port handle
Return value: -1 Error, 0: OK
Terminates usage of the callback function.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 27 of 90
Version 2.14 June 2020

3.8.3. Set LED and buzzer
These functions are only supported at TS-HR38/HRW38 Version 1.23 as well as
TS_HR32/HRW32 Version 1.02 and TS-HR39/TS-HRW39 Version 1.02 or higher version at these
devices.

int TSHRW_SetLED(int PortHandle, int red, int green, int yellow)
PortHandle port handle
red -1: do not change red LED

0: turn off red LED
1: turn on read LED
2: let the device control the red LED

green -1: do not change green LED
0: turn off green LED
1: turn on green LED
2: let the device control the green LED

yellow -1: do not change yellow LED
0: turn off yellow LED
1: turn on yellow LED
2: let the device control the yellow LED

Return value: -1 Error, 0: OK

int TSHRW_Beep(int PortHandle)
PortHandle port handle
Return value: -1 Error, 0: OK

Activate the buzzer for 200 msec. This of course works only if the optional buzzer is available in
the connected device.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 28 of 90
Version 2.14 June 2020

4. Commands for Transponder Type ISO 15693
Basically at all commands for ISO15693 the RequestFlag is given. Please take care of the
ISO15693 spec for definition of this flag.
At the following functions the needed bits of the RequestFlag are automatically set dependent to the
transponder type. If the command is called with UID, the transponder type is included in the UID. If
used without UID, the transponder type can be added to the request flag.
Transponder type flag are defined as follows:

MYD1 = 0x0100
ICODE2 = 0x0200
TAGIT2 = 0x0400
ELECTRO MARIN = 0x0800
STM = 0x1000
FUJITSU = 0x2000
KSW = 0x4000
AVOID Automatic = 0x8000

The setting of request flag can be avoided by adding IGNORE_AUTOMATIC_FLAGS = 0x8000
to the given value. But with this it is up to the user to set the RequestFlag correctly.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 29 of 90
Version 2.14 June 2020

4.1. Get Inventory of tags in antenna field

int TSHRW_ISO_Inventory(int PortHandle, BYTE * pBuffer, int BufLen, int RequestFlag)
int TSHRW_ISO_InventoryAFI(int PortHandle, BYTE * pBuffer, int BufLen,

int RequestFlag, int AFI)
Read inventory information as described in ISO 15693.
This command has to be supported by all ISO transponders.
Inventory provides the unified identifier (UID)
PortHandle Port handle from OpenPort
pBuffer Pointer to inventory data
BufLen Length of data (x times 11 Bytes) (x = Number of recognized RFID's)

Maximum RFID number = 16.
RequestFlag Request Flag, see ISO 15693
AFI AFI Value, see ISO 15693
Return < 0 error, length of read data

The TSHRW_ISO_InventoryAFI function is used to get inventory information of transponders with
specific AFI setting.

Each transponder provides 11Byte with the structure:

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Byte0 Timeslot number ISO 15693 - Error code

Error code = 0, no error

Byte1: Response Flags see ISO 15693.
Byte2: DSFID see ISO 15693.
Byte3 - Byte10: UID

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 30 of 90
Version 2.14 June 2020

4.2. Select transponder

int TSHRW_ISO_Select(int PortHandle, BYTE * pUID,int UIDLen,int nRequestFlag)
PortHandle Port handle from OpenPort
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID is

ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO 15693
Return < 0 error, 0 = OK

Select calls the transponder with this UID. If the UID matches the transponder switches in selected
state and you get an answer. If UID doesn’t match there is no answer.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 31 of 90
Version 2.14 June 2020

4.3. Get Transponder info

int TSHRW_ISO_GetSystemInfo(int PortHandle, BYTE * pBuffer, int BufLen, BYTE * pUID,
int UIDLen, int nRequestFlag)
PortHandle Port handle from OpenPort
pBuffer pointer to system information see ISO norm 15693
BufLen length of system information (variable)
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID will

be ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO 15693.

At some transponders it might be necessary to set the additional Protocol
extension flag (ISO15693_PROTOKOLL_EXTENSION = 08H).

Return < 0 error, length of read data

int TSHRW_ISO_GetTagInfo(int PortHandle, BYTE * pUID, int UIDLen, int* pBlockAnzahl,
int* pBytesProBlock, int* pMfgCode,int nRequestFlag)

PortHandle Port handle from OpenPort
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID is

ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
pBlockAnzahl pointer to block number. If pointer = NULL, Info is ignored.
pBytesProBlock pointer to Bytes Pro Block If pointer = NULL, Info is ignored.
pMfgCode pointer to Manufacturer code. If pointer = NULL, Info is ignored.
RequestFlag Request Flag see ISO Norm 15693
Result -1 Error, 0 = OK

GetTagInfo() can provide specific information about the RFID. This is no direct ISO command.
It is made by GiS to help the clients that are not familiar with ISO norm 15693. You only have to
know the UID (you get UID from TSHRW_ISO_Inventory()) and you get block number, bytes per
block and manufacturer code. It uses the GetSystemInfo function internally if needed.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 32 of 90
Version 2.14 June 2020

4.4. Stay Quiet

int TSHRW_ISO_StayQuiet(int PortHandle, BYTE * pUID, int UIDLen, int nRequestFlag)
PortHandle Port handle from OpenPort
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID is

ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO Norm 15693
Return < 0 error, 0 = OK

“Stay quiet” causes the transponder to stay in low energy level. “Stay quiet” only makes sense with
UID. Because exactly this transponder is meant. After “Stay quiet” “Inventory” ignores the
transponder. The state will be suspended with “Reset to Ready”. Or with a command that uses
UID, like “ReadSingleBlock” with UID. The UID parameter resets the stay quiet state.

4.5. Reset to ready state

int TSHRW_ISO_ResetToReady(int PortHandle,BYTE * pUID,int UIDLen,int nRequestFlag)
PortHandle Port handle from OpenPort
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID is

ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO 15693
Return < 0 error, 0 = OK

Suspends the „Quiet“- State.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 33 of 90
Version 2.14 June 2020

4.6. Read single block

int TSHRW_ISO_ReadSingleBlock(int PortHandle,int BlockNr, BYTE * pBuffer,
int BufLen,BYTE * pUID, int UIDLen, int nRequestFlag)

PortHandle Port handle from OpenPort
BlockNr Block number
pBuffer pointer to data
BufLen length of data (variable)
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID is

ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO Norm 15693

Using transponders of STM with more than 256 blocks, you have to give the
protocol extension flag (ISO15693_PROTOKOLL_EXTENSION = 08H)
additionally. This is needed at access to all block of such a transponder.

Return < 0 error, length of read data

4.7. Read multiple blocks

int TSHRW_ISO_ReadMultipleBlocks(int PortHandle, int nFirstBlock, int nNumberOfBlocks,
BYTE * pBuffer, int BufLen, BYTE * pUID, int
UIDLen, int nRequestFlag)

PortHandle Port handle from OpenPort
nFirstBlock Number of first block (0-254)
nNumberOfBlocks Number of blocks to be read.
pBuffer pointer to data
BufLen length of data (variable)
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID

is ignored. You can get all UID’s with TSHRW_Inventory().
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO Norm 15693

Using transponders of STM with more than 256 blocks, you have to give the
protocol extension flag (ISO15693_PROTOKOLL_EXTENSION = 08H)
additionally. This is needed at access to all block of such a transponder.

Return < 0 error, length of read data

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 34 of 90
Version 2.14 June 2020

4.8. Read security state

int TSHRW_ISO_GetMultipleBlockSecurityStatus(int PortHandle, int FirstBlock,
int NumberOfBlocks,
BYTE * pReceiveBuffer, int BufLen, BYTE
* pUID,int UIDLen,
int nRequestFlag)

PortHandle Port handle from OpenPort
FirstBlock Number of first block
NumberOfBlocks Number of blocks to read
pReceiveBuffer pointer to receive buffer
BufLen length of receive buffer
pUID pointer to UID. Request flag is set automatically. If pointer is NULL,

the UID is ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO 15693

Using transponders of STM with more than 256 blocks, you have to give the
protocol extension flag (ISO15693_PROTOKOLL_EXTENSION = 08H)
additionally. This is needed at access to all block of such a transponder.

Return < 0 error, length of read data

Provides block security of multiple blocks

4.9. Write single block

int TSHRW_ISO_WriteSingleBlock(int PortHandle,int BlockNr,BYTE * pBuffer,
int BufLen,BYTE * pUID, int UIDLen, int nRequestFlag)

PortHandle Port handle from OpenPort
BlockNr Block number
pBuffer pointer to transponder data
BufLen length of transponder data (variable)
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID is

ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO Norm 15693

Using transponders of STM with more than 256 blocks, you have to give the
protocol extension flag (ISO15693_PROTOKOLL_EXTENSION = 08H)
additionally. This is needed at access to all block of such a transponder.

Return < 0 error, 0 = OK

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 35 of 90
Version 2.14 June 2020

4.10. Lock block

int TSHRW_ISO_LockBlock(int PortHandle, int nBlockNr,BYTE * pUID,int UIDLen,
int nRequestFlag)

PortHandle Port handle from OpenPort
BlockNr Block number (0-254)
pUID pointer to UID. Request flag is set automatically. If pointer is NULL, the UID is

ignored. You can get all UID’s with TSHRW_Inventory().
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO Norm 15693
Return < 0 error, 0 = OK

Locks the block with this number. Attention: Process is irreversible.

4.11. Write AFI

int TSHRW_ISO_WriteAFI(int PortHandle, int AFI,BYTE * pUID, int UIDLen,
int nRequestFlag)

PortHandle Port handle from OpenPort
int AFI AFI (see ISO 15693)
pUID pointer to UID. Request flag is set automatically. If pointer is NULL,

the UID is ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID will be ignored.
RequestFlag Request Flag see ISO 15693
Return < 0 error, 0 = OK

Writes „Application family identifier“ into the transponder.
See table: AFI coding in sheet ISO/IEC 15693 – 3. E.g.: Transport or financial chip.

4.12. Lock AFI

int TSHRW_ISO_LockAFI(int PortHandle, BYTE * pUID,int UIDLen,int nRequestFlag)
PortHandle Port handle from OpenPort
pUID pointer to UID. Request flag is set automatically. If pointer is NULL,

the UID will be ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO 15693
Return < 0 error, 0 = OK

Locks AFI (Application family identifier)

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 36 of 90
Version 2.14 June 2020

4.13. Write DSFID

int TSHRW_ISO_WriteDSFID(int PortHandle, int DSFID,BYTE * pUID,int UIDLen,
int nRequestFlag)

PortHandle Port handle from OpenPort
int DSFID DSFID
pUID pointer to UID. Request flag is set automatically. If pointer is NULL,

the UID is ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO 15693
Return < 0 error, 0 = OK

Writes self defined “data storage format identifier” DSFID

4.14. Lock DSFID

int TSHRW_ISO_LockDSFID(int PortHandle, BYTE * pUID,int UIDLen, int nRequestFlag)
PortHandle Port handle from OpenPort
pUID pointer to UID. Request flag is set automatically. If pointer is NULL,

the UID is ignored.
UIDLen length of blocks (must be 8). If Length != 8 parameter pUID is ignored.
RequestFlag Request Flag see ISO 15693
Return < 0 error, 0 = OK

Locks “data storage format identifier” DSFID

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 37 of 90
Version 2.14 June 2020

4.15. Raw request

int TSHRW_ISO_RawRequest(int PortHandle, int RequestType, int RequestFlag,
int Kommando, BYTE * pParam, int ParamLen, BYTE * pData,
int DataLen, BYTE * pReceive, int ReceiveLen)

PortHandle Port handle from OpenPort
RequestType Request type = specific reader flag
RequestFlag Request Flag see ISO Norm 15693
Command ISO Command
pParam pointer to parameter
ParamLen number of parameter
pData pointer to data
DataLen number of data
pReceive pointer to receive buffer
ReceiveLen length of receive buffer
Return < 0 error, Length of read data

With raw request you can send an arbitrary command to the transponder. The answer is pure and
must be evaluated by the user. There are no specific assumptions inside. You find the general
structure in data sheet ISO/IEC 15693 – 3 chapters 7.3.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 38 of 90
Version 2.14 June 2020

5. Commands for Transponder Type MIFARE®
(ISO14443A)

Die Commands for MIFARE® transponders are supported only at some devices (only TS-HRW38
and TS-HRW32).

5.1. Application hints

There are different types of MIFARE® transponders available.
Using this programming interface MIFARE® Classic, MIFARE® Ultralight (NFC Type 2) and
MIFARE® DESFire transponders are supported.

5.1.1. MIFARE® Ultralight (NFC Type 2)

Today there are different MIFARE® Ultralight compatible transponders available from different
manufacturers. So you have to check the datasheet of the transponder to get the memory
configuration.
Original MIFARE® Ultralight Transponders have no crypto engine and so the access is easier to
use. The original MIFARE® Ultralight Transponder do have a block structure with 4 Bytes per
Block and totally 16 blocks. Only blocks 4 – 15 are user defined.
The MIIFARE® Ultralight C Transponder does have 44 Blocks while the NTAG216F has up to
230 blocks. All these and more Tags are supported.

To access any MIFARE® Ultralight compatible transponder the transponder has to be selected first.
This is done using the functions
TSHRW_Mifare_Request()
TSHRW_Mifare_Select()

After this, the function TSHRW_MifareRead() and TSHRW_MifareWrite() can be used to access
the blocks.
The functions TSHRW_Mifare_Authenticate(), TSHRW_MifareGetValue(),
TSHRW_MifareSetValue() and TSHRW_MifareChangeValue() are not supported by this chip type.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 39 of 90
Version 2.14 June 2020

5.1.2. MIFARE® Classic

The MIFARE® Classic Chip is available in 2 Variants:
MIFARE® 1K (1KByte EEProm) and
MIFARE® 4K (4KByte EEProm)

MIFARE® Classic transponders do have a crypto engine and the access is only possible after
authentication.
First of all also
TSHRW_Mifare_Request()
TSHRW_Mifare_Select()
has to be used to select the Chip.

After this the memory range which shall be accessed is enabled using
TSHRW_MifareAuthenticate() or TSHRW_MifareAuthenticateDirect().
These calls differ in the mode how the access to the key is done.
At AuthenticateDirect the key is given directly, at Authenticate a previously stored key
(using SetKey) is used.
The TS-HW38 stores up to 15 keys of key type A and B separately.
With this an effective use of the keys without the necessity of having the keys available all the time
is possible.
Is also possible to store the key in the device previously, so the end user does not need to get the
key in plain text.
The authentication is only valid for the given sector.
For each sector, choose the access rights separately.
The data sheet of the transponder describes this.

5.1.3. MIFARE® DESFire

The MIFARE® DESFire transponders are microcontroller based. The security mechanism might be
selected per usage
MIFARE® DESFire supports the different cryptography methods DES, 3DES und AES.
The communication can be done in plain or enciphered. This is set up in the configuration of the
MIFARE® DESFire chip
The MIFARE® DESFire transponder includes a file system, multiple applications with several files
can be created. This is totally different to MIFARE® Classic and Ultralight transponder where
access is done using blocks.
The access to MIFARE® DESFire transponders uses ISO14443A-4 specification.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 40 of 90
Version 2.14 June 2020

5.2. Function calls MIFARE® common

These functions are used to access a MIFARE® (ISO14443A) card. This is the same for all variants
of MIFARE®. After selection of the MIFARE® card then the commands differ depending on the
type of card.

int TSHRW_Mifare_Request(int PortHandle, WORD *pATQA)
PortHandle Port handle from OpenPort
pATQA pointer to Answer To Request A
Return < 0 error, 0 OK

Only the lowest byte in ATQA is of interest.
Here you have:
0x0044: MIFARE® ultralight or MIFARE® 1K (7BUID) found
0x0004: MIFARE® 1K (4BUID) found
0x0002: MIFARE® 4K (4BUID) found
0x0042: MIFARE® 4K (7BUID) found
0x0344: MIFARE® DESFire found

int TSHRW_Mifare_RequestAll(int PortHandle, WORD *pATQA)
PortHandle Port handle from OpenPort
pATQA pointer to Answer To Request A
Return < 0 error, 0 OK

Only the lowest byte in ATQA is of interest.
Here you have:
0x0044: MIFARE® ultralight or MIFARE® 1K (7BUID) found
0x0004: MIFARE® 1K (4BUID) found
0x0002: MIFARE® 4K (4BUID) found
0x0042: MIFARE® 4K (7BUID) found
0x0344: MIFARE® DESFire found

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 41 of 90
Version 2.14 June 2020

int TSHRW_Mifare_Select(int PortHandle, BYTE * pUID, int nUIDLen, BYTE * pSAK)
PortHandle Port handle from OpenPort
pUID pointer to UID of the transponder
nUIDLen length of UID
pSAK point to Select Acknowledge
Return < 0 error, Length of read UID

This command selects the first found chip and gives the UID of this chip and also the Select
Acknowledge value which gives information’s about the chip type.
The SAK Value has the following information:
0x00: MIFARE Ultralight® with 7 Byte UID
0x08 MIFARE® 1K
0x18 MIFARE® 4K
0x20 MIFARE® DESFire 7 Byte UID

int TSHRW_Mifare_SelectUID(int PortHandle, BYTE * pUID, int nUIDLen, BYTE * pSAK)
PortHandle Port handle from OpenPort
pUID pointer to UID of the transponder
nUIDLen length of UID
pSAK point to Select Acknowledge
Return < 0 error, Length of read data

This command selects the chip with the given UID if the chip is in field and returns the Select
Acknowledge value which gives information’s about the chip type.
The SAK Value has the following information:
0x00: MIFARE Ultralight® with 7 Byte UID
0x08 MIFARE® 1K
0x18 MIFARE® 4K
0x20 MIFARE® DESFire 7 Byte UID

int TSHRW_Mifare_Halt(int PortHandle)
PortHandle Port handle from OpenPort
Return < 0 error, 0 OK

The actual selected chip is stopped.
After this another known chip can be activated using TSHRW_Mifare_SelectUID().

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 42 of 90
Version 2.14 June 2020

5.3. Function calls MIFARE® Classic and Ultralight

int TSHRW_MifareAuthenticate(int PortHandle, BYTE * pUID, int nUIDLen,
 int KeyType, int nAdresse, int BlockNr)

PortHandle Port handle from OpenPort
pUID pointer to UID of transponder or NULL if the selected transponder has to be

used.
nUIDLen length of UID or 0 if the selected transponder has to be used.
KeyType Type of Key 0: KeyA 1: KeyB
nAdresse Index of Keys in Key-Memory
BlockNr Number of block which is authenticated.
Return < 0 error, 0 OK

Authenticates the sector which contains the given block.
A stored key is used. Keys can be stored permanently using TSHRW_MifareSetKey().
MifareAuthenticate is only supported by MIFARE® Classic.

int TSHRW_MifareAuthenticateDirect(int PortHandle, BYTE * pUID, int nUIDLen,
int KeyType, BYTE * pKey, int nKeyLen, int BlockNr)

PortHandle Port handle from OpenPort
pUID pointer to UID of transponder or NULL if the selected transponder has to be

used.
nUIDLen length of UID or 0 if the selected transponder has to be used.
KeyType Type of Key 0: KeyA 1: KeyB
pKey Pointer to key data
nKeyLen length of Key-Data, always 6
BlockNr Number of block which is authenticated.
Return < 0 error, 0 OK

Authenticates the sector which contains the given block.
The given key is used.
MifareAuthenticateDirect is only supported by MIFARE® Classic.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 43 of 90
Version 2.14 June 2020

int TSHRW_MifareSetKey(int PortHandle, int KeyType,
 int nAdresse, BYTE * pKey, int nKeyLen)

PortHandle Port handle from OpenPort
KeyType Type of key 0: KeyA 1: KeyB
nAdresse Index of key in Key-Memory
pKey Pointer to key data
nKeyLen length of Key-Data, always 6
Return < 0 error, 0 OK

The given key is stored in the device at the given key address.
Up to 15 Keys for KeyA and KeyB can be stored.

int TSHRW_MifareRead(int PortHandle, int BlockNr, BYTE * pData, int nDataLen)
PortHandle Port handle from OpenPort
BlockNr Number of the block to be read.
pData Data of the block
nDataLen Length of data
Return < 0 error, Length of read data

Read a block from the transponder. To do this the selection and eventually the authentication has to
be done before.
Always 16 Bytes are read. At MIFARE Ultralight® the block length is 4 Bytes, so always 4 blocks
are read beginning with the given block number.

int TSHRW_MifareWrite (int PortHandle, int BlockNr, BYTE * pData, int nDataLen)
PortHandle Port handle from OpenPort
BlockNr Number of the block to be written.
pData Data of the block
nDataLen Length of data
Return < 0 error, 0 OK

Write a block to the transponder. To do this the selection and eventually the authentication
has to be done before.
The length of data depends on the Transponder type and is 4 Bytes at MIFARE Ultralight® and
16 Bytes at MIFARE® 1K and MIFARE® 4K.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 44 of 90
Version 2.14 June 2020

int TSHRW_MifareGetValue(int PortHandle, int BlockNr, int *pValue)
PortHandle Port handle from OpenPort
BlockNr Number of the block to be read.
pValue pointer to value
Return < 0 error, 0 OK

Read a block in value format. This function can be used only if the block is written in value format.
The value formation is only supported by MIFARE® 1K and MIFARE® 4K Chips.
To do this the selection and the authentication has to be done before.

int TSHRW_MifareSetValue(int PortHandle, int BlockNr, int Value)
PortHandle Port handle from OpenPort
BlockNr Number of the block to be written.
Value Value to be written
Return < 0 error, 0 OK

Write a block in value format. This function formats the block in value format also.
The value formation is only supported by MIFARE® 1K and MIFARE® 4K Chips.
To do this the selection and the authentication has to be done before.

int TSHRW_MifareChangeValue(int PortHandle, int BlockNr, int Richtung, int Differenz)
PortHandle Port handle from OpenPort
BlockNr Number of the block to be written.
Richtung Direction of value change 0 = Decrement, 1 = Increment
Differenz absolute amount to be changed
Return < 0 error, 0 OK

Change a block in value format. This function can be used only if the block is written in value
format. The value formation is only supported by MIFARE® 1K and MIFARE® 4K Chips.
To do this the selection and the authentication has to be done before.
Depending on the given Direction the block is incremented or decremented by the given different.
Depending on the access rights the actual authentication may only allow increment or decrement!

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 45 of 90
Version 2.14 June 2020

5.4. Function calls ISO14443A-4

After selection of cards using ISO1443A-3 from chapter 5.2. the access to the ISO14443A-4
commands is possible after activation of the ISO14443A-4 command level. For this the activation
commands in chapter 5.4.1. are used.

5.4.1. ISO14443-4 activation

int TSHRW_ISO14443SetCID (int PortHandle, int CID)
PortHandle Port handle from OpenPort
CID CardIdentifier, Identification number of the card, if always only one card is

activated, this can be kept as 1.
Return < 0 error, 0 OK

With this function the CardIdentifier is set, which is used at all following commands. Multiple cards
can be selected, each of them needs a separate card identifier.

int TSHRW_ISO14443Rats (int PortHandle, BYTE * pData, int RecvBufLen)
PortHandle Port handle from OpenPort
pData Answer To Select Data
RecvBufLen Max. Length of data buffer
Return < 0 error, Length of read data

This function is used to get the selection response (Request for Answer to Select)
The meaning of the bytes in the selection response is described in the MIFARE® DESFire data
sheet.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 46 of 90
Version 2.14 June 2020

int TSHRW_ISO14443PPS (int PortHandle, int Speed)
PortHandle Port handle from OpenPort
Speed transmission speed
Return < 0 error, 0 OK

With this the parameter of the transmission is defined.
The transmission speed PCDà PICC and PICCà PCD can be defined using the following table:

Speed PCDà
PICC

PICCà
PCD

 Speed PCDà
PICC

PICCà
PCD

0 (0000) 106 kBit 106 kBit 8 (1000) 106 kBit 424 kBit
1 (0001) 212 kBit 106 kBit 9 (1001) 212 kBit 424 kBit
2 (0010) 424 kBit 106 kBit 10 (1010) 424 kBit 424 kBit
3 (0011) 848 kBit 106 kBit 11 (1011) 848 kBit 424 kBit
4 (0100) 106 kBit 212 kBit 12 (1100) 106 kBit 848 kBit
5 (0101) 212 kBit 212 kBit 13 (1101) 212 kBit 848 kBit
6 (0110) 424 kBit 212 kBit 14 (1110) 424 kBit 848 kBit
7 (0111) 848 kBit 212 kBit 15 (1111) 848 kBit 848 kBit

All other values are invalid!

int TSHRW_ISO14443Transmit (int PortHandle, BYTE *pSendData, int nSendLen,
BYTE * pRecvData, int RecvLen)

PortHandle Port handle from OpenPort
pSendData data to be sent
nSendLen length of data to be sent
pRecvData data received
RecvLen max Length of data to be received
Return < 0 error, Length of received data

With this any command can be sent to an activated ISO14443-4 card.
So all commands for MIFARE® DESFire cards can be mapped to this function.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 47 of 90
Version 2.14 June 2020

5.5. Function calls ISO14443B
These functions are only supported at TS-HRW32 in the moment.

int TSHRW_ISO14443B_Request (int handle, BYTE * pUID, int UIDLen,
BYTE * pAppData, int AppDataLen,
BYTE * pProtocolInfo, int ProtocolInfoLen);

handle Port handle from OpenPort
pUID Pointer to PUPI of transponders
UIDLen max. Length of PUPI
pAppData Pointer to application data
AppDataLen max. Length of application data
pProtocolInfo Pointer to protocol information
ProtocolInfoLen max. Length of protocol information
Return value: < 0 Fehler, 0 OK

With this command the REQB Request is sent to the tag and the ATQB response is received.
pUID receives the 4 byte PUPI (Pseudo Unique PICC Identifier)
pAppData receives the 4 byte application data with AFI, CRC_B and Application count
pProtocolInfo receives 3 byte of protocol information.
Please refer to the ISO14443-3 documentation for further description.

int TSHRW_ISO14443B_Wakeup (int handle, BYTE * pUID, int UIDLen,
BYTE * pAppData, int AppDataLen,
BYTE * pProtocolInfo, int ProtocolInfoLen);

handle Port handle from OpenPort
pUID Pointer to PUPI of transponders
UIDLen max. Length of PUPI
pAppData Pointer to application data
AppDataLen max. Length of application data
pProtocolInfo Pointer to protocol information
ProtocolInfoLen max. Length of protocol information
Return value: < 0 Fehler, 0 OK

With this command the WUPB Request is sent to the tag and the ATQB response is received.
pUID receives the 4 byte PUPI (Pseudo Unique PICC Identifier)
pAppData receives the 4 byte application data with AFI, CRC_B and Application count
pProtocolInfo receives 3 byte of protocol information.
Please refer to the ISO14443-3 documentation for further description.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 48 of 90
Version 2.14 June 2020

int TSHRW_ISO14443B_Select (int handle, int Speed, BYTE * pUID, int UIDLen);
handle Port handle from OpenPort
Speed transmission speed
pUID Pointer to PUPI of transponders
UIDLen max. Length of PUPI

With this the ATTRIB command is sent to the transponder.

Using Speed the transmission speed PCDà PICC and PICCà PCD can be defined using the
following table:
Speed PCDà

PICC
PICCà
PCD

 Speed PCDà
PICC

PICCà
PCD

0 (0000) 106 kBit 106 kBit 8 (1000) 106 kBit 424 kBit
1 (0001) 212 kBit 106 kBit 9 (1001) 212 kBit 424 kBit
2 (0010) 424 kBit 106 kBit 10 (1010) 424 kBit 424 kBit
3 (0011) 848 kBit 106 kBit 11 (1011) 848 kBit 424 kBit
4 (0100) 106 kBit 212 kBit 12 (1100) 106 kBit 848 kBit
5 (0101) 212 kBit 212 kBit 13 (1101) 212 kBit 848 kBit
6 (0110) 424 kBit 212 kBit 14 (1110) 424 kBit 848 kBit
7 (0111) 848 kBit 212 kBit 15 (1111) 848 kBit 848 kBit

All other values are invalid!

In pUID the PUPI is given, which was received by TSHRW-ISO14443B_Request.

int TSHRW_ISO14443B_Transmit (int handle, BYTE *pSendData, int nSendLen,
BYTE * pRecvData, int RecvLen);

handle Port handle from OpenPort
pSendData data to be sent
nSendLen length of data to be sent
pRecvData data received
RecvLen max Length of data to be received
Return < 0 error, Length of received data

With this any command can be sent to an activated ISO14443B card.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 49 of 90
Version 2.14 June 2020

5.6. Function calls Mifare DESFire

To use DESFire functions the card has to be activated as described in chapter 5.2. and 5.4.

The DESFire card uses a flexible file system. This file system allows a maximum of 28 applications
on a card. Each application provides up to 32 files. There are five different types of files.
An application is not an executable program. An application is a directory with files for data used
by a program which runs on an external device which can communicate with the DESFire card.
For changing settings of the card or creating an application, select card level (Application ID 0x00).
For changing settings of an application or creating and accessing files, select the associated
application.
After selection of the card according to ISO ISO14443-4 the DESFire card level is selected.

Prior to data transmission a mutual three pass authentication can be done between card and reader
device. After authentication, both sides, the card as well as the reader device, know that they can
trust each other because both had to know the same secret key.
The authentication generates also a session key which is automatically stored both in card and in
Desfire SDK, which can be used to keep the further communication path secure.
All further communication can be done in three different ways:

- Data is sent plain
- Data is sent plain with cryptographic checksum (CMAC), to avoid unnoticed replacement of

card or reader device or man-in-the-middle-attacks
- Data is sent encrypted to avoid unnoticed replacement of card or reader device or man-in-

the-middle-attacks and additionally to avoid unwanted listening.
The type of encryption can be either:

- DES with 8 bytes, or 16 bytes with two equal halves. Least significant bit of each byte is
only used for key version

- 3DES with 16 bytes, the least significant bit of each byte is only used for key version and
will be ignored for encryption

- AES with 16 bytes
It is possible to set configuration of card and applications in such a way that all changes of settings,
creating / deleting of applications and files and reading / writing files need a prior authentication
and transmitted data is enciphered.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 50 of 90
Version 2.14 June 2020

5.6.1. Security commands

Depending on security settings a reader device has to authenticate first to change structure, data or
settings on the card. After authentication, both sides, the card as well as the reader device, know
that they can trust each other, because both had to know the same secret key. The authentication
generates also a session key which is automatically stored in card and in Desfire SDK, which can be
used to keep the communication path secure.
The authentication is invalidated by
 Selecting an application
 Changing the key used for reaching the current authentication state
 Command failure
The security uses DES/3DES or AES enciphering.
Keys for DES or 3DES encryption have a length of 16 bytes. The least significant bit of each byte is
used for key version and will be ignored for encryption. It is recommended not to use parity bits of
key for setting least significant bits.
Keys for AES encryption have a length of 16 bytes, key version is stored separated.
The version of a key is stored with the key on card and can be used für own purposes, the Desfire
card itself don’t check key version in any respect.

The Security commands are used in card level and application level.

int TSHRW_Desfire_Authenticate (int PortHandle, BYTE KeyNo,
 BYTE* pKey, int KeySize)

PortHandle Device handle
KeyNo Number of key
pKey Pointer to buffer with key. Key has length of 16 bytes.
KeySize Length of key
Return: -1 error, 0 OK

Authenticates with specified key.
The currently selected application or card level has to use encrytion type DES or 3DES.
This type of authentication is provided for backwards compatibility with older versions of Desfire
cards. It is recommended to use AuthenticateIso if possible.
If the value of pKey was wrong, TSHRW_GetLastError delivers error 100AE, “Current
authentication status does not allow the requested command”.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 51 of 90
Version 2.14 June 2020

int TSHRW_Desfire_AuthenticateIso (int PortHandle, BYTE KeyNo,
 BYTE* pKey, int KeySize)

PortHandle Device handle
KeyNo Number of key
pKey Pointer to buffer with key. Key has length of 16 bytes.
KeySize Length of key
Return: -1 error, 0 OK

Authenticates with specified key. This type of authentication is used if the currently selected
application or card level uses encryption type DES or 3DES.
If the value of pKey was wrong, TSHRW_GetLastError delivers error 100AE, “Current
authentication status does not allow the requested command”.

int TSHRW_Desfire_AuthenticateAES (int PortHandle, BYTE KeyNo,
 BYTE* pKey, int KeySize)

PortHandle Device handle
KeyNo Number of key
pKey Pointer to buffer with key. Key has length of 16 bytes.
KeySize Length of key
Return: -1 error, 0 OK

Authenticates with specified key. This type of authentication is used if the currently selected
application or card level uses encryption type AES.
If the value of pKey was wrong, TSHRW_GetLastError delivers error 100AE, “Current
authentication status does not allow the requested command”.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 52 of 90
Version 2.14 June 2020

int TSHRW_Desfire_GetKeySettings (int PortHandle,
 BYTE* pKeySettings, int KeySettingsLen)

PortHandle Device handle
pKeySettings Byte 0: encryption type in the application (used in Authenticate(), CMAC)

returns always 0 in card level
0: (3)DES
1: 3K3DES
2: AES

Byte 1: maximum number of keys in the application
Byte 2: Key number to be used for authentication to change a key:

0: with master key,
1 to 13: with this key number, except for master key & the key itself
14: with the key to be changed,
15: all keys except master key are frozen

Byte 3:
Bit0: master key changeable,
Bit1: get file lists and app settings without app master key authent,
 app lists and card settings without card master key authent
Bit2: create/delete file without app master key authenticate

create app without card master key authenticate
delete app also with app master key authenticate

Bit3: configuration changeable
SettingsLen Length of pKeySettings
Return: -1 error, 0 OK

Provides security settings and maximum number of keys of the currently selected application (or
card level, if selected with AID 0x00).

int TSHRW_Desfire_ChangeKeySettings (int PortHandle, BYTE ChangeKeyAuthentWith,
 BYTE OtherKeySettings)

PortHandle Device handle
ChangeKeyAuthentWith Key number to be used for authentication to change a key:

 0: with master key,
 1 to 13: with this key number, except for master key & the key itself
 14: with the key to be changed,
 15: all keys except master key are frozen

OtherKeySettings Bit0: master key changeable
Bit1: get file lists and settings without master key authenticate
 respectively app lists and settings in card level
Bit2: create/delete file/app without master key authenticate
Bit3: configuration changeable

Return: -1 error, 0 OK

Changes security settings of the currently selected application (or card level, if selected with AID
0x00). The number of keys in an application cannot be changed after creation.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 53 of 90
Version 2.14 June 2020

int TSHRW_Desfire_ChangeKey (int PortHandle, BYTE KeyNo,
 BYTE* pNewKey, int NewKeyLen, BYTE NewKeyVersion,
 BYTE* pCurrentKey, int CurrentKeyLen,
 BYTE NewMasterKeyCrypto)

PortHandle Device handle
KeyNo Number of the key which should be changed
pNewKey New key value. 16 bytes. For 3DES keys with integrated new key version
NewKeyLen Länge des Schlüssels in pNewKey
NewKeyVersion Key version, for AES keys. For 3DES keys ignored
pCurrentKey Current value of key with KeyNo. 16 bytes.

Only relevant if key number of key to be changed and key number of key
used for necessary authentication are different.

CurrentKeyLen Länge des Schlüssels in pCurrentKey
MasterKeyCrypto Only used if card level is selected (AID==0x00).

Set encryption type of card master key.
0: DES/3DES, 2: AES.

Return: -1 error, 0 OK

Changes value and version of a key. If the card level is selected the card master key is changed. If
application is selected the application key is changed.
The encryption type of card master key can be changed from 3DES to AES, but not vice versa. On
application level the specified key within the currently selected application is changed, its
encryption type is not changeable.
Prior the command an authentication is needed. KeyNo for authentication is depending of the key
settings of the application.
If the value of pCurrentKey was wrong, TSHRW_GetLastError delivers error 1001E, “Integrity
error, CRC or MAC does not match data”.

int TSHRW_Desfire_GetKeyVersion (int PortHandle, BYTE KeyNo)
PortHandle Device handle
KeyNo Key number
Return: -1 error, >=0 key version with 1 byte

Provides the version of key specified with key number. No prior authentication is needed.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 54 of 90
Version 2.14 June 2020

5.6.2. Card level commands
To use these commands the card level has to be activated.

int TSHRW_Desfire_GetVersion (int PortHandle, BYTE* pVersionData, int VersionDataLen)
PortHandle Device handle
pVersionData Pointer to version data, 28 bytes

Byte 0 to 6 hardware related information.
byte 0: vendor ID
byte 1: type
byte 2: subtype
byte 3: major version
byte 4: minor version
byte 5: storage size (e.g. 0x16 == 2048 bytes,

0x18 == 4096 bytes, 0x1a = =8192 bytes)
byte 6: communication protocol type

Byte 7 to 13 software related information.
byte 7: vendor ID
byte 8: type
byte 9: subtype
byte 10: major version
byte 11: minor version
byte 12: storage size (e.g. 0x16 == 2048 bytes,

0x18 == 4096 bytes, 0x1a = =8192 bytes)
byte 13: communication protocol type

Bytes 14 to 20: unique serial number
Bytes 21 to 25: production batch number
Byte 26: calendar week of production (BCD, binary coded decimal)
Byte 27: year of production (BCD)

VersionDataLen Length of version data
Return: -1 error, 0 OK

Reads manufacturing related data of the card (28 bytes).

int TSHRW_Desfire_GetFreePICCMemory (int PortHandle)
PortHandle Device handle
Return: -1 error, >=0 available memory size

Provides the available memory of the card.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 55 of 90
Version 2.14 June 2020

bool TSHRW_Desfire_FormatPICC (int PortHandle)
PortHandle Device handle
Return: -1 error, 0 OK

Releases all allocated user memory on the card for further use. All applications and all files are
deleted. This cannot be rolled back. Releases allocated memory of earlier deleted applications and
files. The card master key and the card master key settings keep their current values.
The format command requires a preceding authentication with the card master key.

int TSHRW_Desfire_GetCardUID (int PortHandle, BYTE* pUID, int UIDBuffLen)
PortHandle Device handle
pUIDBuffer Pointer to buffer for UID
UIDBufferLen Length of buffer for UID
Return: -1 error, >=0 number of bytes used in pUIDBuffer

Provides the UID of the card. The UID has a length of 7 bytes.
An authentication with any key needs to be performed prior to the command.
The command is needed if card is set to random UID. It is not applicable without random UID.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 56 of 90
Version 2.14 June 2020

int TSHRW_Desfire_SetConfiguration (int PortHandle, BYTE Option,
 BYTE* pSettings, int SettingsLen)

PortHandle Device handle
Option 0: setting configuration byte,

1: setting default-key,
2: setting ATS (Answer to Select)

pSettings Pointer to settings.
Option=0: configuration byte
 bit 0 = 0: Format card enabled
 bit 0 = 1: Format card disabled (cannot be reset),
 bit 1 = 0: Random ID disabled
 bit 1 = 1: Random ID enabled (cannot be reset)
Option=1: default key with version, 17 bytes.
 Byte 0-15 new default key
 Byte 16 key version (3DES and AES)
Option=2: User defined ATS (Answer to Select) parameter

SettingsLen Length of settings
Return: -1 error, 0 OK

This function is used to change the configuration on card level.
The command offers the choice of three different options:

If Random ID is enabled, the card returns a random generated UID at TSHRW_Mifare_Select
command. To read the card UID, the reader device has to read the UID using
TSHRW_Desfire_GetCardUID, this requires a preceding authentication

If default key is set, this key is used as initial value for all keys in newly created applications.

With option = 2 the RATS answer can be set. This should be done only by experts!
Please see the MIFARE DESFire Functional Specification for details on this function.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 57 of 90
Version 2.14 June 2020

5.6.3. Card Level Commands for Application management

A DESFire card can hold up to 28 applications.
An application includes files, up to 32 files in one application are possible. The application provides
functionality to control access to its files.
Most application level commands requires that card level is selected. For several commands a prior
authentication is needed, depending on card master key settings.

int TSHRW_Desfire_GetApplicationIds (int PortHandle, BYTE* pAppIds, int AppIdsLen)
PortHandle Device handle
pAIDBuffer Pointer to buffer for AIDs. An array of AIDs will be written with 4 bytes

per AID.
AIDBufferLen Length in byte of buffer for AIDs
Return: -1 error, >=0 number of IDs returned in pAIDBuffer, each with 4 bytes

Provides the application identifiers (AIDs) of all applications on the card, except card level (AID
0x00) itself. The command requires that card level is selected.

int TSHRW_Desfire_GetApplicationIdsAndNames (int PortHandle,
 BYTE* pAppNamesArray,
 int AppNamesArrayLen)

PortHandle Device handle
pAppNamesArray Pointer to buffer for an array of records with application IDs.

For every application one record with:
bytes 0-2 native AID
bytes 3-4 ISO AID
bytes 5-20 DF name
byte 21 Length of DF name

AppNamesArrayLen Length in byte of buffer for application IDs
Return: -1 error, >=0 number of bytes used in pAppNamesArray

Provides for every application on card three kinds of application identifier.
Native application identifier (AID), ISO7816-4 application identifier (ISO AID) and
ISO7816-4 DF name (DF name).
Applications without DF name are ignored. Command cannot be used in authentication status after
authentication with AuthenticateISO or AuthenticateAES

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 58 of 90
Version 2.14 June 2020

int TSHRW_Desfire_SelectApplication (int PortHandle, int AppId)
PortHandle Device handle
AppId ID of application, 0: card level
Return: -1 error, 0 OK

Selects an application. Selection with AppId 0 selects card level.

int TSHRW_Desfire_CreateApplication (int PortHandle, int AppId, BYTE KeyCrypto,
 BYTE MaxNoOfKeys, int bFilesWithIsoID,
 BYTE ChangeKeyAuthentWith,
 BYTE OtherKeySettings,
 BYTE* pIso7816Data, int Iso7816DataLen)

PortHandle Device handle
AppId Application ID. 3 Bytes. Must be unique. 0 is reserved for card level.
KeyCrypto Type of encryption (e.g. for Authenticate(), CMAC)

0: DES/3DES, 2: AES
MaxNoOfKeys Count of keys (maximal 14)
bFilesWithIsoID 0: files with ISO7816 file ID are not possible.

1: further created files within this application have ISO7816 file ID
Independent of application having ISO7816 application ID.

ChangeKeyAuthentWith Key number to be used for authentication to change a key (Change
Key):
0: with application master key
1 to 13: with this key number, except for master key & the key itself,
 master key and change key need authentication with master key
14: with the key to be changed
15: all keys except master key are frozen

OtherKeySettings Bit 0: master key is changeable
Bit 1: get file lists and settings without authenticate
Bit 2: create/delete file without master key
Bit 3: configuration is changeable

pIso7816Data Pointer to ISO7816 application ID, NULL: ignore
ISO AID with 2 bytes + DF name (can be empty)

Iso7816DataLen Length of ISO7816-Application-ID, 0: ignore pIso7816Data
Return: -1 error, 0 OK

Creates an application. Encryption type and number of keys cannot be changed after creation.
All keys are initialized with the default key.
The command requires that card level is selected.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 59 of 90
Version 2.14 June 2020

int TSHRW_Desfire_DeleteApplication (int PortHandle, int AppId)
PortHandle Device handle
AppId Application ID
Return: -1 error, 0 OK

Deletes an application with all its associated files.
The command requires that card level is selected.
Memory of deleted application and deleted files will not be released. The only way to release
memory is formatting the card.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 60 of 90
Version 2.14 June 2020

5.6.4. File level commands

All file commands refer only to the files in the currently selected application. A file is specified
with its file identifier (one byte) which must be unique within its associated application.

For several commands authentication is needed, depending of key settings.
There are five different file types:
- Standard Data Files and Backup Data Files are used to store unformatted user data.
- Backup Data Files have additionally an interior backup mechanism, see remarks below.
- Value Files are used to store and manipulate a 32bit signed integer value.
- Linear Record Files and Cyclic Record Files are used to store structural data.

They consist of an array of records and one current record.
Cyclic and Linear Record Files have only one difference: if all records in file are filled and an
additional record should commit, a Linear Record File will return an error, a Cyclic Record File
will overwrite the oldest record.

All file types except Standard Data File work with interior backup mechanism. A writing operation
changes a mirror file and not the file itself, a following reading operation will read the old data.
A CommitTransaction is needed to validate changes in a file. Selection of another application
without previous commit, removing card from reader without previous commit or an
AbortTransaction will invalidate all changes since last CommitTransaction and conserve original
data.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 61 of 90
Version 2.14 June 2020

int TSHRW_Desfire_GetFileIds (int PortHandle, BYTE* pFileIds, int FileIdsLen)
PortHandle Device handle
pFileIds Pointer to buffer for File IDs.

An array of IDs will be written with 1 byte per File ID.
FileIdsLen Length of pFileIds
Return: -1 error, >=0 number of File IDs returned in pFileIDs

Provides the file identifiers (File ID) of all files in the currently selected application.

int TSHRW_Desfire_GetFileIsoIds (int PortHandle, BYTE* pFileIds, int FileIdsLen)
PortHandle Device handle
pFileIds Pointer to buffer for ISO7816 File IDs An array of IDs will be written with

2 bytes per ID.
FileIdsLen Length of pFileIds
Return: -1 error, >=0 number of File IDs returned in pFileIDs, each with 2 bytes

Provides the file identifiers according to ISO7816-4 (ISO File ID) of all files in the currently
selected application. Files without ISO7816 File ID are ignored.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 62 of 90
Version 2.14 June 2020

int TSHRW_Desfire_GetFileSettings (int PortHandle, int FileId,
BYTE* pFileSettings, int FileSettingsBufferLen)

PortHandle Device handle
FileId File ID
pFileSettings Byte 0: File type

0: Standard Data File, 1: Backup Data File, 2: Value File,
3: Linear Record File, 4: Cyclic Record File

Byte 1: communication mode
0: Plain communication
1: Plain communication secured by MACing
3: Fully enciphered communication

Bytes 2-3: access rights
Bits 0-3: Change AccessRights
Bits 4-7: Read & Write Access
Bits 8-11: Write Access
Bits 12-15 Read Access
for each access right:

0x0 - 0xd: key number used for authentication
0xe: free access,
0xf: deny access,

For Standard and Backup Data File:
Bytes 4-6: useable file size

For Value File:
Bytes 4-7: lower limit
Bytes 8-11: upper limit
Bytes 12-15: current maximal limited credit value
Byte 16: 0x00: Limited credit command disabled

0x01: Limited credit command allowed
For Linear and Cyclic Record File:

Bytes 4-7: record size
Bytes 8-11: maximal number of records
Bytes 12-15: current number of records

FileSettingsBufferLen Length of pFileSettings
Return: -1 error, >=0 Length of data written to pFileSettings

Provides information on the properties of a specified file. The information is file type,
communication mode, access rights and other properties which depend on the file type.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 63 of 90
Version 2.14 June 2020

int TSHRW_Desfire_ChangeFileSettings (int PortHandle, int FileId,
 int bChangeAccessRightsFree,
 BYTE* pFileSettings, int FileSettingsLen)

PortHandle Device handle
FileId File ID
bChangeAccessRightsFree 1: Free access without authentication.

0: Authentication needed.
pFileSettings Byte 0: communication mode

0: Plain communication
1: Plain communication secured by MACing
3: Fully enciphered communication

Bytes 1-2: access rights
Bits 0-3: Change AccessRights
Bits 4-7: Read & Write Access
Bits 8-11: Write Access
Bits 12-15 Read Access

for each access right:
0x0 - 0xd: key number used for authentication
0xe: free access,
0xf: deny access

FileSettingsLen Length of data in pFileSettings
Return: -1 error, 0 OK

Changes communication mode and access rights of a specified file.
Type of file and file size could not be changed after file creation.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 64 of 90
Version 2.14 June 2020

int TSHRW_Desfire_CreateStandardDataFile (int PortHandle, BYTE FileId,
 int IsoFileId, int FileSize,
 BYTE CommunicationMode,
 int AccessRights)

PortHandle Device handle
FileId File ID. Within the range 0x00 to 0x1f. Must be unique within the currently

selected application. It is not necessary to create the files within the
application in a special order,

IsoFileId File identifier according to ISO7816-4 (ISO File ID).
2 bytes. Within the range 0x0001 und 0xffff.
Must be unique within the currently selected application.
For commands according to ISO7816-4 like
TSHRW_Desfire_IsoSelectFile.
If this value is 0 no ISO File ID is set.
Need and possibility dependent on application setting “files have ISO ID”

FileSize Usable file size. Cannot be changed after creation.
CommunicationMode Mode for file access:

0: plain,
1: plain secured by MAC,
3: fully enciphered

AccessRights Bits 0-3: Change AccessRights
Bits 4-7: Read & Write Access
Bits 8-11: Write Access
Bits 12-15 Read Access
for each access right:

0 - Dhex: key number used for authentication
Ehex: free access,
Fhex: deny access

Return: -1 error, 0 OK

Creates a Standard Data File within the selected application.
This file type is used for the storage of unformatted user data. It works without backup mechanism.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 65 of 90
Version 2.14 June 2020

int TSHRW_Desfire_CreateBackupDataFile (int PortHandle, BYTE FileId,
 int IsoFileId, int FileSize,
 BYTE CommunicationMode,
 int AccessRights)

PortHandle Device handle
FileId File ID. Within the range 0x00 to 0x1f. Must be unique within the currently

selected application.
IsoFileId File identifier according to ISO7816-4 (ISO File ID).

2 bytes. Within the range 0x0001 und 0xffff.
Must be unique within the currently selected application.
For commands according to ISO7816-4 like
TSHRW_Desfire_IsoSelectFile.
If this value is 0 no ISO File ID is set.
Need and possibility dependent on application setting “files have ISO ID”

FileSize Usable file size. Cannot be changed after creation.
CommunicationMode Mode for file access:

0: plain,
1: plain secured by MAC,
3: fully enciphered

AccessRights Bits 0-3: Change AccessRights
Bits 4-7: Read & Write Access
Bits 8-11: Write Access
Bits 12-15 Read Access
for each access right:

0- Dhex: key number used for authentication
Ehex: free access,
Fhex: deny access

Return: -1 error, 0 OK

Creates a Backup Data File within the selected application.
This file type is used for the storage of unformatted user data. It works with interior backup
mechanism.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 66 of 90
Version 2.14 June 2020

int TSHRW_Desfire_CreateValueDataFile (int PortHandle, BYTE FileId,
 BYTE CommunicationMode,
 int AccessRights,
 int LowerLimit, int UpperLimit,
 int InitialValue, BYTE Config)

PortHandle Device handle
FileId File ID. Within the range 0x00 to 0x1f. Must be unique within the currently

selected application.
CommunicationMode Mode for file access:

0: plain,
1: plain secured by MAC,
3: fully enciphered

AccessRights Bits 0-3: Change AccessRights
Bits 4-7: Read & Write Access
Bits 8-11: Write Access
Bits 12-15 Read Access
for each access right:

0 - Dhex: key number used for authentication
Ehex: free access,
Fhex: deny access

LowerLimit Minimal value possible
UpperLimit Maximal value possible
InitialValue Initial value of value file
Config Bit 0: „LimitedCredit“ feature, 1: enabled, 0: disabled

Bit 1: „Free GetValue“ feature, 1: enabled, 0: disabled
Return: -1 error, 0 OK

Creates a Value File within the selected application.
This file type is used to store and manipulate a 32bit signed integer value.
It works with interior backup mechanism.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 67 of 90
Version 2.14 June 2020

int TSHRW_Desfire_CreateLinearRecordFile (int PortHandle, BYTE FileId,
 int IsoFileId,
 BYTE CommunicationMode,
 int AccessRights,
 int RecordSize, int MaxCountRecords)

PortHandle Device handle
FileId File ID. Within the range 0x00 to 0x1f. Must be unique within the currently

selected application.
IsoFileId File identifier according to ISO7816-4 (ISO File ID).

2 bytes. Within the range 0x0001 und 0xffff.
Must be unique within the currently selected application.
For commands according to ISO7816-4 like
TSHRW_Desfire_IsoSelectFile.
If this value is 0 no ISO File ID is set.
Need and possibility dependent on application setting “files have ISO ID”

CommunicationMode Mode for file access:
0: plain,
1: plain secured by MAC,
3: fully enciphered

AccessRights Bits 0-3: Change AccessRights
Bits 4-7: Read & Write Access
Bits 8-11: Write Access
Bits 12-15 Read Access
for each access right:

0 - Dhex: key number used for authentication
Ehex: free access,
Fhex: deny access

RecordSize Size of a record, within range from 1 to 0xffffff (16,777,215)
MaxCountRecords Maximal number of records, range from 1 to 0xffffff (16,777,215)
Return: -1 error, 0 OK

Creates a Linear Record File within the selected application.
This file type is used to store structural data. File consists of an array of records and one current
record. If all records in file are filled and an additional record should commit, an error will returned.
It works with interior backup mechanism.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 68 of 90
Version 2.14 June 2020

int TSHRW_Desfire_CreateCyclicRecordFile (int PortHandle, BYTE FileId,
 int IsoFileId,
 BYTE CommunicationMode,
 int AccessRights,
 int RecordSize, int MaxCountRecords)

PortHandle Device handle
FileId File ID. Within the range 0x00 to 0x1f. Must be uniqe within the currently

selected application.
IsoFileId File identifier according to ISO7816-4 (ISO File ID).

2 bytes. Within the range 0x0001 und 0xffff.
Must be unique within the currently selected application.
For commands according to ISO7816-4 like
TSHRW_Desfire_IsoSelectFile.
If this value is 0 no ISO File ID is set.
Need and possibility dependent on application setting “files have ISO ID”

CommunicationMode Mode for file access:
0: plain,
1: plain secured by MAC,
3: fully enciphered

AccessRights Bits 0-3: Change AccessRights
Bits 4-7: Read & Write Access
Bits 8-11: Write Access
Bits 12-15 Read Access
for each access right:

0 - Dhex: key number used for authentication
Ehex: free access,
Fhex: deny access

RecordSize Size of a record, within range from 1 to 0xffffff (16,777,215)
MaxCountRecords Maximal number of records, range from 1 to 0xffffff (16,777,215).

Because of 1 current record the maximal number of valid records is 1 less.
Return: -1 error, 0 OK

Creates a Cyclic Record File within the selected application.
This file type is used to store structural data. A file consists of an array of records and one current
record. If all records in file are filled and an additional record should commit, the oldest record will
be overwritten by newly committed record.
It works with interior backup mechanism.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 69 of 90
Version 2.14 June 2020

int TSHRW_Desfire_DeleteFile (int PortHandle, BYTE FileId)
PortHandle Device handle
FileId File ID

Deletes a file within the selected application.
Allocated memory associated with the deleted file is not freed
The file identifier of the deleted file can be reused to create a new file within that application.

int TSHRW_Desfire_ReadData (int PortHandle, BYTE FileId, BYTE CommunicationMode,
 int StartIndex, int ReadAnz,
 BYTE* pReadData, int ReadDataLen)

PortHandle Device handle
FileId File ID
CommunicationMode 0: data will be sent plain,

1: plain secured by MAC,
3: fully enciphered

StartIndex Index of first byte to be read
ReadAnz Number of bytes to be read. 0: reading entire file, starting at StartIndex
pReadDataBuffer Pointer to read buffer
ReadDataLen Length of read buffer
Return: -1 error, >= 0 length of actually read data

Reads data from Standard Data File or Backup Data File.
Requires Read or Read&Write access right.

int TSHRW_Desfire_WriteData (int PortHandle, BYTE FileId, BYTE CommunicationMode,
DWORD OffsetInFile, BYTE* pWriteData, int WriteDataLen)

PortHandle Device handle
FileId File ID
CommunicationMode 0: data need to be sent plain,

1: plain secured by MAC,
3: fully enciphered

OffsetInFile Index in file of first byte to be overwritten
pWriteData Pointer to buffer with data for writing
WriteDataLen Length of data in pWriteData
Return: -1 error, 0 OK

Writes data from Standard Data File or Backup Data File.
Requires Write or Read&Write access right.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 70 of 90
Version 2.14 June 2020

int TSHRW_Desfire_GetValue (int PortHandle, BYTE FileId, BYTE
CommunicationMode, unsigned int * pValue)

PortHandle Device handle
FileId File ID
CommunicationMode 0: value need to be sent plain,

1: plain secured by MAC,
3: fully enciphered
If "FreeGetValue" is set in CreateValueDataFile, then use plain or plain
with MAC depending on authentication.

pValue Pointer to buffer for value of file. A value has a length of 4 bytes.
Return: -1 error, 0 OK

Reads the currently stored value from Value File.
Requires Read, Write or Read&Write access right.
Can used without these access rights if file has attribute "FreeGetValue".

int TSHRW_Desfire_Credit (int PortHandle, BYTE FileId, BYTE CommunicationMode,
 unsigned int Value)

PortHandle Device handle
FileId File ID
CommunicationMode 0: value need to be sent plain,

1: plain secured by MAC,
3: fully enciphered

Value Amount to increase value. Must be positive.
Return: -1 error, 0 OK

Increases the value stored in a Value Files.
Requires Read&Write access right.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 71 of 90
Version 2.14 June 2020

int TSHRW_Desfire_LimitedCredit (int PortHandle, BYTE FileId,
 BYTE CommunicationMode, unsigned int Value)

PortHandle Device handle
FileId File ID
CommunicationMode 0: value need to be sent plain,

1: plain secured by MAC,
3: fully enciphered

Value Amount to increase value. Must be positive.
Return: -1 error, 0 OK

Allows a limited increase of a value stored in a Value File without having full Read&Write
permissions to the file. This feature can be enabled or disabled during value file creation.
The value is limited to the debit value of the last transaction.
Requires Write or Read&Write access right.

int TSHRW_Desfire_Debit (int PortHandle, BYTE FileId, BYTE CommunicationMode,
 unsigned int Value)

PortHandle Device handle
FileId File ID
CommunicationMode 0: value need to be sent plain,

1: plain secured by MAC,
3: fully enciphered

Value Amount to decrease value with. Must be positive.
Return: -1 error, 0 OK

Decreases the value stored in a Value Files.
Requires Read, Write or Read&Write access right.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 72 of 90
Version 2.14 June 2020

int TSHRW_Desfire_ReadRecord (int PortHandle, BYTE FileId, BYTE CommunicationMode,
 int StartRecord, int ReadCountRecords, int RecordSize,
 BYTE* pReadDataBuffer, int ReadDataBufferLen)

PortHandle Device handle
FileId File ID
CommunicationMode 0: sent in plain,

1: plain secured by MAC,
3: fully enciphered

StartRecord Index of newest record to be read, 0 is equivalent to newest created record
ReadCountRecords Number of records to be read. 0: reading all records
RecordSize Size of a record
pReadDataBuffer Pointer to read buffer
ReadDataBufferLen Length of read buffer
Return: -1 error, >0 length in bytes of actually read data

Reads a set of complete records from a Linear Record File or Cyclic Record File.
Records are transmitted in chronological order. Starting with the oldest, which is
ReadCountRecords-1 before the one addressed by StartRecord. If StartRecord is 0 then all records,
from the oldest record up to and including the newest record are read. The current record in contrast
is not committed yet and is not read.
Requires Read or Read&Write access right.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 73 of 90
Version 2.14 June 2020

int TSHRW_Desfire_WriteRecord (int PortHandle, BYTE FileId,
BYTE CommunicationMode, DWORD OffsetInRecord,
 BYTE* pWriteData, int WriteDataLen)

PortHandle Device handle
FileId File ID
CommunicationMode 0: sent in plain,

1: plain secured by MAC,
3: fully enciphered

OffsetInRecord Offset in current record
pWriteData Pointer to buffer with data for writing
WriteDataLen Length of data for writing
Return: -1 error, 0 OK

Writes data in the current record of a Linear Record File or Cyclic Record File.
With a following CommitTransaction the current record will be validated, will become the newest
validated record, can be read from now on but cannot be written any more, and a new current record
will append at the end and will be filled with zeros. If all records in file are filled yet, a Linear
Record File will return an error, a Cyclic Record File will overwrite the oldest record with the
current record. An AbortTransaction will invalidate the writing.
Requires Write or Read&Write access right.

int TSHRW_Desfire_ClearRecordFile (int PortHandle, BYTE FileId)
PortHandle device handle
FileId File ID
Return: -1 error, 0 OK

Reset a Cyclic or Linear Record File to the empty state.
After executing this command the CommitTransaction command is needed. Before
CommitTransaction command all WriteRecord commands will fail.
An AbortTransaction command will invalidate the clearance.
Requires Read&Write access right.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 74 of 90
Version 2.14 June 2020

int TSHRW_Desfire_CommitTransaction (int PortHandle)
PortHandle device handle
Return: -1 error, 0 OK

Validate all previous write access to Backup Data Files, Value Files and Record Files within an
application.

int TSHRW_Desfire_AbortTransaction (int PortHandle)
PortHandle device handle
Return: -1 error, 0 OK

Invalidate all previous write access to Backup Data Files, Value Files and Record Files within an
application. The command uses integrated backup mechanism. It doesn’t change authentication
state.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 75 of 90
Version 2.14 June 2020

5.6.5. Commands according to ISO 7816-4

These commands are according to ISO7816-4. It is not possible to mix their execution with
execution of native DESFire commands. After selection of a card according to ISO14443 it is
necessary to use either only native DESFire commands or only ISO7816 commands.

int TSHRW_Desfire_IsoSelectApplication (int PortHandle, BYTE* pAppName,
int AppNameLen)

PortHandle device handle
pAppName pointer to buffer for application name, equals DF-Name

card level has 0xD2 76 00 00 85 01 00
AppNamesArrayLen Length of application name
Return: -1 error, 0 OK

Select an application or card level.

int TSHRW_Desfire_IsoSelectFile (int PortHandle, int IsoFileId)
PortHandle device handle
IsoFileId ISO File ID
Return: -1 error, 0 OK

Select a file within current application.

int TSHRW_Desfire_IsoReadData (int PortHandle, int StartIndex, int ReadCount,
 BYTE* pReadDataBuffer, int ReadDataBufferLen)

PortHandle Handle device
StartIndex Index of first byte to be read
ReadCount Number of bytes to be read
pReadDataBuffer Pointer to read buffer
ReadDataBufferLen Length of read buffer
Return: -1 error, > 0 length of actually read data

Reads data from Standard Data File or Backup Data File.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 76 of 90
Version 2.14 June 2020

int TSHRW_Desfire_IsoWriteData (int PortHandle, int StartIndex,
 BYTE* WriteData, int WriteDataLen)

PortHandle device handle
StartIndex Index in file of first byte to be overwritten
pWriteData Pointer to buffer with data for writing
WriteDataLen Length of data in pWriteData
Return: -1 error, 0 OK

Writes data to Standard Data File or Backup Data File.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 77 of 90
Version 2.14 June 2020

6. Commands for NFC (Near Field Communication)
Using the SDK you can write data to transponders using the NFC specification in a comfortable
way. These transponders can be read and used by other NFC enabled devices like many modern
Smartphones.

6.1. General remarks

NFC stands for ”Near Field Communication”. This is an international transmission standard
where many leading companies like Google, Microsoft, Nokia, Samsung and others are involved.
Most modern smartphones with Android or Windows Phone operating system already have an NFC
reader included.
If NFC is activated at the smartphone and a NFC tag comes near to the phone, the content is
automatically read.
Depending on the content the system starts the corresponding app and offers the data.
For Example:
Contact information is stored in the tag in NFC Format. A contact information is like a name card
and contains name, phone numbers, email address and so on.
If the tag is read, the contact information is found and the user is asked if he wants to add this
contact. Then the contact information is added to the contacts (phone book).

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 78 of 90
Version 2.14 June 2020

6.2. Supported transponder types

Memory sizes stated below are user data memory sizes of the transponders. To store NFC data there
is some extra data space required for NFC protocol. So depending of the data type less data space is
available for actual user data.

6.2.1. NFC Type 2

1. NXP MIFARE Ultralight® is able to store 48 Bytes of user data.
2. NXP MIFARE Ultralight® C is able to store 144 Bytes of user data.
3. NXP NTAG 203 is able to store 144 Bytes of user data.
4. Infineon my-d NFC is able to store 128 Bytes of user data.
5. Infineon my-d move NFC is able to store 128 Bytes of user data.
6. Further transponder compatible to NFC Type 2.

6.2.2. NFC Type 4

1. NXP MIFARE® DESFire with different memory sizes

6.2.3. NFC Type 6

1. NXP ICode SLI / SLIX with different memory sizes
2. TI TagIT HF with different memory sizes
3. Other ISO15693 compatible transponder.

Especially at NFC Type 6 not all ISO15693 compatible transponders are supported by all NFC
devices. There are many NFC devices known which support only NXP transponder.

6.2.4. NFC Type 7

1. NXP MIFARE® Classic 1k is able to store 720 Bytes of user data.
2. NXP MIFARE® Classic 4k is able to store 3360 Bytes of user data.

Not supported by all NFC devices.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 79 of 90
Version 2.14 June 2020

6.3. Supported types of user data

The JSON format is used to exchange user data with the SDK commands for reading and writing.
JSON (JavaScript Object Notification) is an open-standard format that uses human-readable text to
transmit data between applications.
JSON parsers exits for nearly all common programming languages.
Remarks to the following examples in JSON format:
Spaces, line feeds and carriage returns between and around syntactic elements are allowed and
ignored by the parsers and this SDK.

The SDK supports following types of user data:

6.3.1. Text

A NFC device which reads such a transponder shows the text given by the transponder
immediately.

Example (JSON format):
{"TEXT":{"TITLE":"This is an example for a text"}}
or
{"TEXT":

{
"TITLE": "This is an ""example for a text"" with quotation marks"

}
}

6.3.2. WWW Address

A NFC device which reads such a transponder wishes to load and display the web address in the
internet browser. Depending on the NFC device either the web address only or also an optional
description is shown and the user has to accept opening it, or the browser is opened immediately
and tries to load the address.

Example (JSON format):
{"BOOKMARK":

{
"URL": "https://www.exampleAddress.com",
"TITLE": "This is an optional description"

}
}

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 80 of 90
Version 2.14 June 2020

6.3.3. Telephone

A NFC device which reads such a transponder opens the stored number in the phone app to call this
number. Depending on the NFC device either the phone number only or also an optional description
is shown and the user has to accept opening it, or the phone application is opened immediately and
the phone number is showed (but not called).

Example (JSON format):
{"TELEPHON":

{
"NUMBER": "12345678",
"TITLE": "This is an optional description"

}
}

6.3.4. SMS

A NFC device which reads such a transponder shows the SMS given by the transponder so it can be
edited and sent.
Depending on the NFC device either the SMS phone number only or also an optional description is
shown and the user has to accept opening it, or the SMS editor is opened immediately and the SMS
is shown (but not sent).

Example (JSON format):
{"SMS":

{
"ADDRESS": "12345678",
"MESSAGE": "This is a message text",
"TITLE": "This is an optional description"

}
}

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 81 of 90
Version 2.14 June 2020

6.3.5. Email

A NFC device which reads such a transponder opens the Email app and shows the mail. The user
can edit or send the mail.

Example (JSON format):
{"MAIL":

{
"ADDRESS": "example@exampleAddress.com",
"SUBJECT": "This is a subject",
"MESSAGE": "This is a message text",
"TITLE": "This is an optional description"

}
}

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 82 of 90
Version 2.14 June 2020

6.3.6. Contact

A NFC device which reads such a transponder adds this contact to the phone book. Depending on
the NFC device either the contact name only or also an optional description is shown and the user
has to accept opening it, or the phone book is opened immediately and the contact is added.
A contact consists of first name, surname, company / organisation and any amount of phone
numbers, email addresses and websites.
A phone number consists of number, place (0: unknown, 1: work, 2: private) and
device type (0: unknown or fixed-line, 1: mobile, 2: fax).

Example (JSON format):
{"VCARD":

{
"FIRSTNAME": "This is a first name ",
"SURNAME": "This is a surname ",
"ORGANISATION": "This is a company or an organization ",
"MAILS":
{

"MAIL0": "example@exampleAddress.de",
"MAIL1": "secondExample@secondAddress.com ",
"MAIL2": anotherExample@anotherAdresse.eu

},
"URLS":
{

"URL0": "https://www. ExampleAdresse.de",
"URL1": http://www. secondAdresse.com

},
"PHONES":
{

"PHONE0":
{

"NUMBER": "12345678",
"TYPE_PLACE": 2,
"TYPE_DEVICE": 1

},
"PHONE1":
{

"NUMBER": "11223344"
}

}
}

}

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 83 of 90
Version 2.14 June 2020

6.4. Function calls NFC

int TSHRW_Nfc_ReadTag (int PortHandle, char* pReadData, int ReadDataLen)
PortHandle Device handle
pReadData Pointer to read buffer for JSON string with terminating 0
ReadDataLen Length of read buffer
Return: -1 error, >= 0 length of actually read data (without terminating 0)

Reads from transponder user data in NFC format. The data is returned as string in JSON format.

int TSHRW_Nfc_ReadUrl (int PortHandle, char* pUrl, int UrlLen, char* pText, int TextLen)
PortHandle Device handle
pUrl Pointer to read buffer for URL with terminating 0
UrlLen Length of read buffer for URL
pText Pointer to read buffer for text (description) with terminating 0.

NULL: ignore text
TextLen Length of read buffer for text. 0: ignore text
Return: -1 error, >= 0 length of actually read URL (without terminating 0)

Reads from transponder user data in NFC format from type URL (Uniform Resource Locator, e.g.
a web address) plus an optional description text. If user data is not a URL or not in NFC format,
return value is -1.

int TSHRW_Nfc_ReadText (int PortHandle, char* pText, int TextLen)
PortHandle Device handle
pText Pointer to buffer for Text with terminating 0
TextLen Length of pText
Return: -1 error, >= 0 length of actually read Text (without terminating 0)

Reads from transponder user data in NFC format of type Text.
If user data is not a Text or not in NFC format, return value is -1.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 84 of 90
Version 2.14 June 2020

int TSHRW_Nfc_ReadTagUid (int PortHandle, BYTE* pReadData, int ReadDataLen)
PortHandle Device handle
pReadData Pointer to read buffer
ReadDataLen Length of read buffer
Return: -1 error, >= 0 length of actually read data

Reads from transponder its UID (Unique Identifier). A UID has a length of 8 bytes.

int TSHRW_Nfc_WriteTag (int PortHandle, char* pWriteData, int WriteDataLen,
BYTE* pKey, int KeyLen, int Lock)

PortHandle Device handle
pWriteData Pointer to buffer with JSON string for writing, no terminating 0 necessary
WriteDataLen Length of string for writing
pKey Pointer to buffer with key. A key has a length of 16 bytes.

NULL: ignore key
KeyLen Length of key (0: ignore key)
Lock 1: Sets the format and the user data of transponder to read only after writing.

Attention: This cannot be rolled back.
0: do not set to read only

Return: -1 error, 0 OK

Writes user data in NFC format in transponder.
If transponder is not NFC formatted yet, the function formats it as NFC.
The user data has to be in JSON format.
Transponder of type DESFire might be write protected with key. In this case the key is needed too.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 85 of 90
Version 2.14 June 2020

int TSHRW_Nfc_WriteUrl (int PortHandle, char* pUrl, int UrlLen,
char* pText, int TextLen,
BYTE* pKey, int KeyLen, int Lock)

PortHandle Device handle
pUrl Pointer to buffer with URL for writing, no terminating 0 necessary
UrlLen Length of URL to be written
pText Pointer to buffer with description text for writing,

no terminating 0 necessary,
NULL: ignore text

TextLen Length of description text to be written (0: ignore text)
pKey Pointer to buffer with key. A key has a length of 16 bytes.

NULL: ignore key
KeyLen Length of key (0: ignore key)
Lock 1: Sets the format and the user data of transponder to read only after writing.

Attention: This cannot be rolled back.
0: do not set to read only

Return: -1 error, 0 OK

Writes user data of type URL in NFC format in transponder plus an optional description text
(URL: Uniform Resource Locator, e.g. a web address).
If transponder is not NFC formatted yet, the function formats it as NFC.
The user data has to be in JSON format.
Transponder of type DESFire might be write protected with key. In this case the key is needed too.

int TSHRW_Nfc_WriteText (int PortHandle, char* pText, int TextLen,
BYTE* pKey, int KeyLen, int Lock)

PortHandle Device handle
pText Pointer to buffer with Text for writing, no terminating 0 necessary
TextLen Length of Text to be written
pKey Pointer to buffer with key. A key has a length of 16 bytes.

NULL: ignore key
KeyLen Length of key (0: ignore key)
Lock 1: Sets the format and the user data of transponder to read only after writing.

Attention: This cannot be rolled back.
0: do not set to read only

Return: -1 error, 0 OK

Writes NFC formatted text to a transponder.
If transponder is not NFC formatted yet, the function formats it as NFC.
Transponder of type DESFire might be write protected with key. In this case the key is needed too.

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 86 of 90
Version 2.14 June 2020

int TSHRW_Nfc_FormatTag (int PortHandle, BYTE* pKey, int KeySize)
PortHandle Device handle
pKey Pointer to buffer with key. A key has a length of 16 bytes.

NULL: ignore key
KeySize Length of key (0: ignore key)
Return: -1 error, 0 OK

Formats the transponder in NFC format.
Transponder of type DESFire can be write protected with key. In this case the key is needed too.

int TSHRW_Nfc_LockTag (int PortHandle, BYTE* pKey, int KeySize)
PortHandle Device handle
pKey Pointer to buffer with key. A key has a length of 16 bytes.

NULL: ignore key
KeySize Length of key (0: ignore key)
Return: -1 error, 0 OK

Sets the format and the user data of transponder to read only.
Transponder of type DESFire can be write protected with key yet. In this case the key is needed too
(to secure that all, the user data also, is read only).

int TSHRW_Nfc_SetTagPasswordProtected (int PortHandle, int bUserDataToo,
BYTE* pOldKey, int OldKeySize,
BYTE* pNewKey, int NewKeySize)

PortHandle Device handle
bUserDataToo != 0: protect user data too,

0: protect only format and settings of transponder
pOldKey Pointer to buffer with key. A key has a length of 16 bytes.

NULL: ignore key
OldKeySize Length of key (0: ignore key)
pNewKey Pointer to buffer with new key. A key has a length of 16 bytes.
NewKeySize Length of new key
Return: -1 error, 0 OK

Protect the format and the user data of a DESFire transponder by key for unauthorized overwriting.
Transponder of type DESFire can be write protected with key yet. In this case the key is needed too
(to secure that all, the user data also, is protected).

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 87 of 90
Version 2.14 June 2020

7. Error list

7.1. Common errors

No. (dec.) Description
1 Error opening the port
2 Timeout-value invalid
3 Port number invalid
4 Timeout
5 given buffer too small
6 buffer size invalid
7 wrong parameter
8 No data for communication
9 No data received
10 Checksum error
11 No communication to device
12 check buffer empty
13 Mode invalid
14 Command not allowed
15 Block number invalid
16 Command error
17 Antenna field is off. Turn on antenna field first using TSHRW_SetRF
19 Block has no value entry
20 Data amount wrong
21 No Transponder (NACK= 15H)
22 Checksum error from device (SYNC= 16H)
23 Collision error
24 Invalid command received, the device cannot execute this command. For

example if programmer commands (Chapter 4) are used at TS-HR38 which
is only capable of reader mode. (CAN= 18H)

25 Communication error (CRC) at air interface

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 88 of 90
Version 2.14 June 2020

7.2. Error accessing ISO15693 Transponder

No. (dec.) Description
32 ISO Error Command not supported
33 ISO Error Command not recognized
34 ISO Error Option not supported
35 ISO Error No information
36 ISO Error Block not available
37 ISO Error Block already locked
38 ISO Error locked block cannot be changed
39 ISO Error Block cannot be written
40 ISO Error Block cannot be locked
41 ISO Error unknown error
42 ISO Error Length invalid
43 ISO Error Unknown transponder
44 ISO Error Framing Error

7.3. Error accessing MIFARE® transponder

No. (dec.) Description
250 MIFARE® Error invalid Value
251 MIFARE® Error Parity Error
252 MIFARE® Error Authenticate Error,
254 MIFARE® Error CRC Error

7.4. SDK specific DESFire error codes

No. (hex) Description
10020 Key length is not 16 bytes
10021 Old key length is not 16 bytes
10022 Crypt method 3K3DES not supported
10023 Command needs authentication
10024 MAC does not match data
10025 CRC after decryption does not match data
10026 Length of parameter buffer is too small for data
10027 Length of parameter field not valid
10028 Not allowed after authentication with AuthenticateISO or AuthenticateAES

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 89 of 90
Version 2.14 June 2020

7.5. By DESFire card created native errors

The lower 2 digits of the error number are the error number returned by DESFire card.
No. (hex) Description

1000C No changes done
1000E Internal error, insufficient NV-Memory to complete operation
1001C Command code not supported
1001E Integrity error, CRC or MAC does not match data / Padding bytes not valid
10040 Invalid Key number specified
1007E Internal error, length of Command string invalid
1009D Current config/status does not allow the requested command
1009E Internal error, value of the parameter invalid
100A0 Requested AID not present on PICC
100A1 Unrecoverable error within application, application will be disabled
100AE Current authentication status does not allow the requested command
100AF Internal error, additional data frame is expected to be sent
100BE Attempt to read/write data from/to beyond the file's limits
100C1 Unrecoverable error in PICC, PICC will be disabled
100CA Previous command was not fully completed.
100CD PICC was disabled by an unrecoverable error
100CE Max. number of applications reached. Number of applications limited to 28
100DE Duplicate application/file number given
100EE Internal error, EEProm could not be written
100F0 File not found
100F1 Unrecoverable error in file

7.6. DESFire error codes according to ISO7816-4, generated by card

Lower 4 digits of error number are ISO7816-4 error number
No. (hex) Description

16282 End of file reached before reading all wished bytes
16700 Internal error, Wrong length
16982 File access not allowed
16985 File empty
16A82 Internal error, wrong parameter P1 or P2
16A86 Internal error, wrong parameter P1 or P2
16C00 File not found
16F00 No precise diagnostics

GiS Gesellschaft für Informatik und Steuerungstechnik mbH

Programming interface (SDK) of the TS-HRW Series

GiS mbH, Lenningen SDK of TS-HRW Series Page 90 of 90
Version 2.14 June 2020

7.7. Error codes NFC commands

Nr. (hex) Description
20001 Transponder type is not supported in functions for NFC
20002 This Mifare transponder type is not supported in functions for NFC
20003 Transponder is not of type DESFire
20004 Transponder is not NFC formatted
20005 Authentication of MifareClassic transponder failed
20006 Authentication of DESFire card level failed
20007 Authentication of DESFire NFC application level failed
20008 Error at changing settings
20009 Error at changing key
2000A Error at locking of blocks in ISO15693 transponder
2000B Error at formatting transponder as NFC
2000C NFC in transponder has newer unsupported version as NFC in SDK
2000D NFC in transponder has older unsupported version as NFC in SDK
2000E Transponder is write protected
2000F Transponder is NFC read protected
20010 Transponder is NFC write protected
20011 Error at reading of blocks
20012 Error at writing of blocks
20013 Error at writing in DESFire file
20014 Transponder has not enough free memory for this action
20015 ID of DESFire NFC application not found
20016 Transponder is NFC formatted, but has no user data
20017 Error in NFC structure
20018 Error in user data of type URL
20019 Error in user data of type MIME
2001A Error in given JSON-String
2001B Transponder is NFC formatted and has user data of unknown type
2001C Transponder has NFC user data, but not of type URL
2001D Transponder has NFC user data, but not of type Text

	1. Introduction
	1.1. Operation modes
	1.1.1. Reader mode
	1.1.3. Programmer mode

	1.2. Error treatment
	1.3. Definitions

	2. General commands
	2.1. Functions for Ethernet Devices
	2.2. Functions for devices with Bluetooth Interface
	2.3. Common functions for device access

	3. Parameter setup for Reader Mode
	3.1. Write Key value
	3.2. Parameter read and write
	3.2.1. Parameter structure

	3.3. Prefix
	3.4. Suffix
	3.5. Termix
	3.6. Postcode
	3.7. Reader Mode Parameter (not for devices with PS2 Interface)
	3.7.1. Reader mode parameter structure

	3.8. Data reception in Reader mode
	3.8.1. Cyclic query
	3.8.2. Set up callback function
	3.8.3. Set LED and buzzer

	4. Commands for Transponder Type ISO 15693
	4.1. Get Inventory of tags in antenna field
	4.2. Select transponder
	4.3. Get Transponder info
	4.4. Stay Quiet
	4.5. Reset to ready state
	4.6. Read single block
	4.7. Read multiple blocks
	4.8. Read security state
	4.9. Write single block
	4.10. Lock block
	4.11. Write AFI
	4.12. Lock AFI
	4.13. Write DSFID
	4.14. Lock DSFID
	4.15. Raw request

	5. Commands for Transponder Type MIFARE® (ISO14443A)
	5.1. Application hints
	5.1.1. MIFARE® Ultralight (NFC Type 2)
	5.1.2. MIFARE® Classic
	5.1.3. MIFARE® DESFire

	5.2. Function calls MIFARE® common
	5.3. Function calls MIFARE® Classic and Ultralight
	5.4. Function calls ISO14443A-4
	5.4.1. ISO14443-4 activation

	5.5. Function calls ISO14443B
	5.6. Function calls Mifare DESFire
	5.6.1. Security commands
	5.6.2. Card level commands
	5.6.3. Card Level Commands for Application management
	5.6.4. File level commands
	5.6.5. Commands according to ISO 7816-4

	6. Commands for NFC (Near Field Communication)
	6.1. General remarks
	6.2. Supported transponder types
	6.2.1. NFC Type 2
	6.2.2. NFC Type 4
	6.2.3. NFC Type 6
	6.2.4. NFC Type 7

	6.3. Supported types of user data
	6.3.1. Text
	6.3.2. WWW Address
	6.3.3. Telephone
	6.3.4. SMS
	6.3.5. Email
	6.3.6. Contact

	6.4. Function calls NFC

	7. Error list
	7.1. Common errors
	7.2. Error accessing ISO15693 Transponder
	7.3. Error accessing MIFARE® transponder
	7.4. SDK specific DESFire error codes
	7.5. By DESFire card created native errors
	7.6. DESFire error codes according to ISO7816-4, generated by card
	7.7. Error codes NFC commands

